Magnetism and Superconductivity

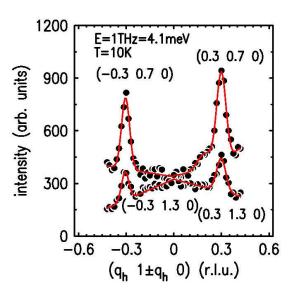
MAGNETISM IN PURE AND DOPED Sr₂RuO₄.

O. Friedt¹, Y. Sidis¹, M. Braden^{1,2} P. Bourges¹, G. André¹, P. Pfeuty¹, B. Hennion¹, Z.Q. Mao³, M. Minakata³, S. Nakatsuji, S. NishiZaki³ and Y. Maeno^{3,4}.

¹ Laboratoire Leon Brillouin, CEA/CNRS, F.-91191, Gif sur Yvette CEDEX France.

² Forschungszentrum Karlsruhe, INFP, Postfach 3640, D-76021, Germany.

³ Department of Physics, Kyoto University 606-8502, Japan.

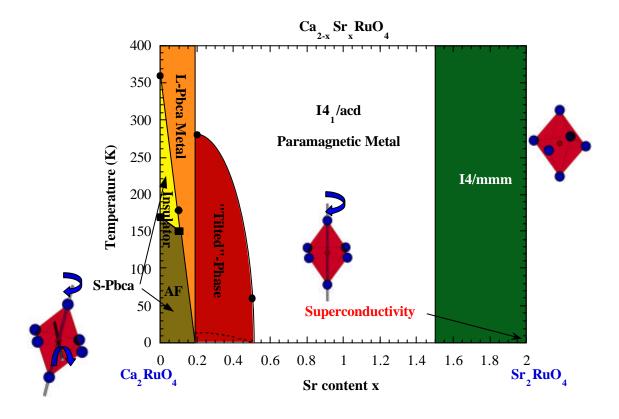

⁴ CREST, Japan Science and Technology Corporation, Kawaguchi, Saitima 332-0012, Japan.

After the discovery of High- T_c superconductivity in cuprates many groups looked for superconductivity in other transition metal oxides. The only success came in Sr_2RuO_4 [1], which is isostructural to $(La,Sr)_2CuO_4$. However, in marked contrast to cuprates, superconductivity appears in Sr_2RuO_4 only at low temperature (~1.5 K) and out of a normal state that is a well-formed Landau Fermi liquid. Nevertheless, the superconductivity in Sr_2RuO_4 is rather unconventional. In particular, there is growing evidence that the pairing exhibits triplet symmetry [2] in agreement with the early proposal that superconductivity in Sr_2RuO_4 is mediated by ferromagnetic fluctuations [3].

The Fermi-surface in Sr₂RuO₄ separates into two distinct regions : (i) the α , β sheets are derived from the $4d_{xz}$ and $4d_{yz}$ orbitals, (ii) the γ sheet is derived from the $4d_{xy}$ orbital. The quasi-1D α,β sheets give rise to strong nesting effects peaking the bare spin susceptibility at incommensurate $(\pm 2\pi/3a,\pm 2\pi/3a, 0)$ [4], where a stands for the RuO₂ plane lattice parameter. Our inelastic neutron scattering (INS) studies confirmed this analysis perfectly. The imaginary part of the dynamical magnetic susceptibility seems to be dominated by fluctuations incommensurate at $q_0 = (\pm 0.6\pi/a,$ $\pm 0.6\pi/a$, 0) [5]. Analyzed within Stoner theory, Sr₂RuO₄ appears very close to a magnetic transition at the wave vector \mathbf{q}_0 . Furthermore, incommensurate spin fluctuations should favor a d-wave spin singlet superconducting order parameter [4], as in High-T_c cuprates. Finally, the direct observation of ferromagnetic fluctuations being still missing, our INS studies cast some doubt about the predominant ferromagnetic fluctuations role of superconductivity of Sr₂RuO₄.

Substitution of nonmagnetic Ti⁴⁺ ions (4d⁰) for Ru⁴⁺ ions (4d⁴) quickly suppresses superconductivity. Our neutron diffraction measurements in a sample with 9% Ti demonstrate that Ti impurities trigger a short range magnetic ordering at **q**₀ below 25K [6].

condensation of the incommensurate fluctuations observed in pure Sr₂RuO₄ through Ti substitution strongly suggests that Sr₂RuO₄ lies close to a quantum critical point and this close quantum critical point should be taken into account in the superconducting compound. Likewise, the magnetic moment in the Ti-compound (0.3 $\mu_{\rm B}$) points along the c axis, revealing a weak out-ofplane anisotropy, which is likely due to spin-orbit coupling [7]. Considering an incommensurate spin fluctuation driven pairing mechanism, persistence of such an anisotropy in pure Sr₂RuO₄ has been proposed to tune the superconducting order parameter from a spin singlet even parity to a spin triplet odd parity [8].


Figure 1: Constant energy scan at 4.1 meV along (110) and (-110) directions around the wave vector (0,1,0). Incommensurate spin fluctuations are located at wave vectors $Q_0=q_0+G$, where $q_0=(\pm 0,3, \pm 0.3, 0)=(\pm 0.6\pi/a, \pm 0.6\pi/a, 0)$ and G correspond to a zone center or a Z point in the (HK0) planes.

Besides, the substitution of Sr by isovalent Ca allows one to explore an astonishingly rich phase diagram [9,10], see Fig. 2. The smaller ionic radius

Magnetism and Superconductivity

of the Ca drives a series of structural phase transitions characterized by rotations of the RuO₆-octahedra around distinct axes [9]. These structural distortions are coupled with anomalous magnetic and electronic phenomena. The most interesting behavior is observed for the end-member Ca₂RuO₄ which exhibits a transition from a paramagnetic

metallic to an antiferromagnetic insulating state. This transition is accompanied by a prominent change in its crystal structure and has to be interpreted as a Mott-metal insulator transition. Due to its well defined crystal structure, Ca₂RuO₄ appears a very promising material for the study of such transitions.

Figure 2. Phase diagram of Ca_{2-x}Sr_xRuO₄ [9] presenting the different structural and magnetic phases. Note that all phases are metallic except for S-Pbca. The drawings illustrate the different tilt and rotation schemes of the octahedra.

- [1] Y. Maeno et al., *Nature* **372**, 532 (1994).
- K. Ishida et al., *Nature* 396, 698 (1998);
 G. Luke et al., *Nature* 394, 558 (1998).
- [3] T.M. Rice and M. Sigrist, *J. Phys. Condens. Matter* **7**, L643 (1995).
- [4] I.I Mazin et al., Phys. Rev. Lett. 82, 4324 (1999).
- [5] Y. Sidis et al., Phys. Rev. Lett. 83, 3320 (1999).
- [6] M. Braden et al., submitted to *Phys. Rev. Lett.* (2001).
- [7] K.K Ng and M. Sigrist, *J. Phys. Soc. Jpn* **69**, 3764 (2000).
- [8] M. Sato and M. Komoto, J. Phys. Soc. Jpn 69, 3505 (2000), T. Kuwabara and M. Ogata, Phys. Rev. Lett. 85, 4586 (2001).
- [9] O. Friedt et al., Phys. Rev. B63, 174432 (2001), M. Braden et al. Phys. Rev. B58, 847 (1998).
- [10] S. Nakatsuji et al., Phys. Rev. Lett. **84**, 2666 (2000).