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The relationships between quasicrystals and other
incommensurately modulated crystals (IC) have many
interesting theoretical aspects. An obvious link is that
both can be derived from a common description based
on an embedding in a higher-dimensional superspace
that contains a periodic lattice of so-called atomic
surfaces. The superspace cut-and-projection algorithm
permits a group-theoretical classification of all possible
structures. Hyperspace crystallography leads also to
the possibility of an attractive analogy within the realm
of lattice dynamics based on the introduction of the
notion of " phasons "  in addition to the usual phonons.
Here we stumble onto a first real difficulty. Once we
go beyond one-dimensional structures, there are very
important differences in the topology of the atomic
surfaces between QC and IC. This has been pointed out
by many authors, and turns the subject into a really
subtle issue. Generally spoken, the atomic surfaces in
QC are not continuous[1].
Based on these studies it was anticipated that
"phasons" in QC would not be collective propagating
modes as in IC  but rather atomic jumps[2], that can be
visualized by configuration flips within Penrose-like
tiling models. Ensuing experimental studies confirmed
this picture. In our current understanding an atomic
jump is a stochastic single-particle process. The
phonon heat bath produces a fluctuating environment
that from time to time will open a low-energy gateway
that is prosperous for a jump. Starting from this
conceptual image that thrives on disorder, it is hard to
imagine an orderly concerted choreography of
simultaneous jumps of two or more atoms. This only
stresses the fact that, although they are both
materialized by a sliding of the cut in superspace,
phasons in QC and IC should correspond to very
different, antipodal types of dynamics. Nevertheless,
this poses a number of small problems in QC. First  of
all, the (anomalous) temperature dependence of  the
(quasielastic) neutron-scattering signal that reveals the
existence of the hopping does not tally with the
description we gave above of the jump process in
terms of a phonon bath[3]. Secondly, tile flips in real,
i.e. not mono-atomic structural models entail in general

several simultaneous atomic jumps. It was therefore
inferred that the elementary phason building brick
would rather be the atomic jump than the tile flip.
In triple-axis neutron-scattering experiments on a large
single-grain sample of the icosahedral phase
Al-Mn-Pd, we came across some evidence that seems
to challenge this common-sense based paradigm. In
fact, we found a Q-dependence of the quasielastic
signal that we are only able to explain by assuming that
two (or more) atoms jump simultaneously keeping
their separation vector fixed.

Figure 1. Binary scattering plane. The sizes of the full
circles represent the intensity of the Bragg peaks. The
locations of the various  constant-Q scans have been drawn:
they were all made in the kf  = 1.64 Å-1 configuration. The
angle  ϕ  is defined with respect to Qx

These experiments were performed with the cold-
neutron double-monochromator triple-axis spectrome-
ter 4F2 of the LLB in the fixed kf = 1.64 Å-1 and kf =
1.96 Å-1 configurations. The loci of some of the
constant-Q energy scans in the binary scattering plane
of the QC are indicated in Fig. 1, which also shows  the
intensities of the most prominent Bragg peaks. The
choice of the binary plane allows to explore all types of
symmetry axes (2-, 3-, and 5-fold) of the QC in one
set-up. The 3 cm3-sized single-grain sample has been
grown by the Czochralsky method.
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A typical data set is featured in Fig. 2 together with a
fit based on a Lorentzian quasielastic signal convoluted
with the Gaussian resolution function. Also included in
this fit are the elastic peak and a linear incoherent
phonon background. The Q-dependence of the
quasielastic intensity for Q = 2.85 Å-1 is displayed in
Fig. 3. It is strongly anisotropic. In a simple single-
particle model  in the white-noise approximation  for
atomic jumps between two sites separated by jump
vectors dj along a m-fold axis of the QC, the
quasielastic intensity should follow an (incoherent)
structure factor:
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Figure 2. Typical constant-Q scan with fit. The data shown
here correspond to |Q| = 2.85 Å-1  and  ϕ = 0°.

The sum allows for the fact that for jumps along m-fold
directions there are 30/m symmetry-related jump
vectors.  If the direction of the jump is not along a
symmetry axis, then the sums will have to extend over
the whole icosahedral group. (This corresponds to the
case m=1). The quasielastic and elastic intensities obey
a sum rule such that the incoherent elastic structure
factor is obtained from Eq.(1) by changing the sign in
front of the cosine term:
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Figure 3. Quasielastic intensities for |Q| = 2.65 Å-1  and |Q|
= 2.85 Å-1 . A fit with model function (2) is also shown.
(Data collected with a second sample, both in kf = 1.64 Å-1

and  kf = 1.97 Å-1  set-ups, bear out the reproducibility of
these results).

The quasielastic structure factors embodied by equation
(1) all exhibit an  isotropic first local maximum in Q, as
can be appreciated from Fig.4 for two-fold jumps. This
remains true if  the direction of the jump is not a
symmetry axis. This is quite at variance with the
experimentally observed data which do not display
such a spherical shell of maximum intensity and on the
contrary exhibit their strongest anisotropy at low Q.
We should point out that none of the three models
(m=2; m=3; m=5) expressed by equation (1) can
reproduce the peak/valley-ratios that occur in Figure 3.
This means that one needs another type of model.  By
some serendipity we found out that the data shown in
Fig. 3 are perfectly described by equation (2)  for m=3
and d= 3.85 Å.  Among the (idle) lines of thought we
followed  in our attempts to come to grasps with this
alienating finding,  we can mention models as proposed
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by Katz and Gratias[4] and down-sized versions of
Elser’s escapement model[4]. The failure to represent
our data by such models helped us to realize where the
minus signs in front of the cosines in equation (1) come
from. Each time an atom jumps from A to an empty
site B, the neutron-scattering contrast between A and B
is inverted, which amounts to a  π-flip of its phase.
Therefore, the only way to obtain a plus sign is by
designing a model that preserves the contrast despite
the occurrence of the jump. This can only be  achieved
by admitting that two atoms in A and B are jumping
simultaneously to  A’ and B’ respectively, whereby the
vectors AB and A’B’ are equipollent. This leads to
expressions of the type
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the correlation vector sj is analogous to the  separation
vector AB. The [1 – cos(Q.dj)] parts are responsible for
the first radial maximum, while [1 – cos(Q.sj)] terms
entail a modulation of this local maximum that
otherwise would have  been an isotropic spherical

shell. In our data we thus have sj  = 3.85 Å, while dj

cannot be determined. At once, this means that
phasons in QC  could nevertheless share some
collective character with  propagating phason modes
that are typical of IC. We must  admit that such
collective motion clashes with our Weltanschauung, as
we were strong believers of the heat-bath-driven
scenario outlined above. We must signal that the
description of the data by Equation (2) breaks down at
higher Q-values, where we are unable to explain the
observed intensities. At 2.65 and at 2.85 Å-1 we are so
lucky to find ourselves in the small-Q limit, where the
largest characteristic distance within the dynamics can
be discerned in an isolated fashion, free from the
obfuscating presence of signals corresponding to
shorter length scales. We think  that this novel result
constitutes an important step towards the elucidation of
the physical nature of phasons in QC.

Figure 4. Contour plots for the quasielastic intensity, calculated in a model with two-fold jumps according to Equation (1),
m=2. Note the almost isotropic first maximum of the intensity around Q = 1. 5 Å-1. The color code is shown at the bottom of
the Figure, going from left to right, e.g. the first color on the left codes numerical values between 0 and 1.
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