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Inelastic neutron scattering has revealed the existence of strong magnetic
fluctuations in high-temperature cuprate superconductors. While in the undoped
parent compound excitations, originating from the (π,π) antiferromagnetic wave
vector, can be explained by simple spin-wave theory, the situation is more
complex for the doped materials. Indeed the magnetic excitations renormalize in a
spectacular way through the superconducting critical temperature Tc. This raises
the question of the role played by magnetism for superconductivity in the cuprates
and in particular, of its connection to the one-electron spectral function? Finally,
small angle neutron scattering investigations of the vortex lattice structure in the
mixed phase of HTSC are also introduced.

1. Introduction

The phenomenon of superconductivity (SC) was first discovered in 1911 by Kamerlingh-
Onnes who observed a sudden drop of the resistance in Mercury below a critical
temperature Tc of 4.2 K (see Figure 1). Onnes furthermore observed that
superconductivity can be destroyed by the application of a large enough current J or
magnetic field H.

Figure 1: Resistance of a Mercury wire as measured by Onnes.
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Later (1933) Meissner and Ochsenfeld discovered that a superconductor behaves like a
perfect diamagnet: under the application of an external magnetic field, the induction B
vanishes inside the superconductor: this is the so-called Meissner effect.

A complete theoretical understanding of superconductivity in simple metals was only
achieved more than 40 years after its discovery. In 1934 Gorter and Casimir developed a
first thermodynamical approach of SC and in 1935 London could explain the Meissner
effect. A more complete phenomenological theory was elaborated by Ginzburg and
Landau in 1950. This theory uses a Gauge invariance and introduces the concept of order-
parameter, that allows describing the system in the vicinity of the critical temperature.
Abrikosov1 in 1957 anticipated that for Type-II superconductors, where the magnetic flux
can penetrate into the sample in form of quantized vortices, a vortex lattice can be
formed. His prediction was verified experimentally 10 years later. Examples of the
determination of the vortex lattice by means of neutron scattering will be given in
Section 4.

The path toward a microscopic theory of SC was guided by the observation that Tc
depends on the mass M of the atom: Tc ˜  M -α. In 1950 Fröhlich proposed the electron-
phonon interaction as the mechanism responsible for superconductivity, which provides
an exponent α=0.5. As can be seen in table 1, this is true for most simple metals, but
there are some examples showing strong deviations from 1/2. A quantitative description
of SC was realized by Bardeen Cooper and Schrieffer2 (BCS) in 1957. This non-
perturbative theory describes SC in terms of Cooper-pairs bound by a weak (electron-
phonon) interaction. As a result, a SC-gap opens in the electronic density-of-state and a
simple relation was established between the zero-temperature SC-gap value ? and Tc:
2?(T=0)˜ 3.5 kBTc. Notice that in such models the gap function is assumed to show no or
little k-dependence.

Table 1: measured coefficients α of the isotopic effect Tc ˜  M -α

α α
Hg 0.50±0.03 Cd 0.50±0.10
Tl 0.50±0.10 Mo 0.33±0.05
Sn 0.47±0.02 Ru 0.00±0.10
Pb 0.48±0.01 Os 0.20±0.05

This theory was such a success that J. M. Ziman wrote in his introduction to SC 3: “SC
was long considered the most extraordinary and mysterious of the properties of metals;
but the theory of Bardeen, Cooper and Schrieffer –the BCS theory- has explained so
much that we can say that we now understand the superconducting state almost as well as
we do the normal ‘state’.”

In 1986 Tilley and Tilley in their book on Superconductivity and Superfluidity4 wrote
some general experimental facts about superconductors:

A) Only metals become superconductors
B) Tc is always below about 20 K (see Figure 2)
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C) Good conductors are not the best superconductors
D) Magnetic metals do not superconduct

We shall see in the following that these conclusions have been strongly questioned since
then.

2.1 The high-temperature superconductivity (HTSC) revolution

The state of the research on SC was revolutionized in 19865, when Georg Bednorz and
Karl Alex Müller from IBM Rüschlikon, Switzerland, demonstrated the existence of
superconductivity in the perovskites La2–x(Ba,Sr)xCuO4 (La214), x<1). Soon after new
materials (YBa2Cu3O7−δ (Y123), Bi2Sr2CaCu2O8+δ (Bi2212) (δ<1)) have been discovered
with Tc values breaking the temperature of liquefaction of Nitrogen. It was realized that
the phonon-interaction alone would not be sufficient to explain the high critical
temperatures observed in the cuprates and various competing theoretical models have
been proposed. In particular magnetism was very early recognized as one of the key
element to understand HTSC6.

Figure 2: Evolution of Tc throughout the years. Notice the change of slopes after the
discovery, in 1986, of SC in Cu-perovskite materials.

2.2 Extraordinary properties of HTSC

These materials are doped insulators (La2CuO4 is a Mott insulator) with a very
anisotropic layered structure (see Figure 3) composed of CuO2 layers alternating with so-
called reservoir layers (see Figure 3). By modifying the reservoir-layers one can control
both the doping level of the CuO2 planes and Tc.
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Figure 3: Layered structure of the La2-xSrxCuO4+δ. By modifying the chemical
composition of the reservoir layers, one can control the doping level in the SC-planes.

Figure 4: Sketch of the phase diagram of cuprates
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The undoped system is antiferromagnetic (AF) and insulating (Figure 4). At small
doping, the Néel temperature TN decreases rapidly and vanishes. The system enters then a
spin-glass phase. Upon further doping superconductivity appears below a critical
temperature Tc, but the system behaves like a strange metal (underdoped (UD) regime).
Tc reaches then an optimum (Opt) and decreases again (overdoped (OD) regime).
The proximity of the AF and SC naturally raises the question of the importance of
magnetism for the existence of SC. One prediction of models involving magnetism was
the existence of a superconducting gap parameter that would change sign upon 90
degrees rotation (so called d-wave SC gap function). Indeed, a SC gap function with
nodes (see Figure 5) has been clearly identified by means of angle resolved
photoemission spectroscopy7 (ARPES) and phase sensitive8 experiments. We shall see
that this finding is crucial for the understanding of the neutron data presented in the
following Sections. HTSC also differ from low-Tc materials by the observation, in the
UD state, of the existence of a pseudogap9 well above Tc, both in the charge and spin
sectors. This pseudogap closes at a temperature T* that is increasing with decreasing
doping (see green line in Figure 4) and the ratio of ? max(T=0)/Tc increases with
underdoping.

Figure 5, left: ARPES determination7 of the angle φ dependence of the SC-gap.
Right: reconstruction of the Fermi surface and gap function as determined from
ARPES10. The + and - signs indicate the sign change expected for a d-wave gap function
upon 90 deg. rotation. The angle φ on the Fermi surface (FS) is defined by the grey
arrow.
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3. Magnetism in cuprates

3.1 Inelastic neutron scattering

Inelastic neutron scattering allows a direct measurement of the magnetic scattering
function Sαβ(Q,ω): the  Fourier transform both in time and space of the spin-spin
correlation function (see lecture by H. Schober, this school). Sαβ(Q,ω) is in turn related,
through the fluctuation-dissipation theorem, to the imaginary part of the dynamical
generalized spin susceptibility ′ ′ χ αβ  via:

(1)

The measured susceptibility can then be compared to the one calculated using various
microscopic models. An example of such a comparison is given in Section 3.4. Both
conventional triple-axis (see examples below) and time-of-flight 11 spectrometers have
been used to measure the magnetic excitations in HTSC.

3.2 Undoped cuprates

3.2.1 Magnetic structure

In the undoped case, the Cu2+ atoms (3d9, S=1/2) in the CuO2 planes order
antiferromagnetically with a propagation vector (1/2, 1/2, 0) as was determined for La124
and Y123 from both powder12 and single crystal studies13. While in La21414, the moment
direction is along the (1,1,0) direction, a study of the evolution of the magnetic intensity
as a function of magnetic field has shown that in Y123 the moment direction is along the
(100) direction, implying a small in-plane anisotropy15. The value of the ordered moment
appears to be strongly reduced with respect to the 1 µB corresponding to S=1/2.
Experiments have yielded ordered moments in the range 0.3-0.6 µB and several possible
origins have been considered to explain this reduction: g factor of Cu2+; covalency effects
due to hybridisation of the copper and oxygen atoms; quantum fluctuations expected in
low-dimensional antiferromagnet with small spin.16

3.2.2 Spin waves in a square lattice antiferromagnet

The coupling between neighbouring spins in a square lattice antiferromagnet is described
by the Heisenberg Hamiltonian:

H = JS iS j
ij
∑ (2)

where J is the nearest-neighbor superexchange coupling constant (Figure 6A).

Sαβ (Q,ω) =
1 + n ω( )
π γµB( )2 ′ ′ χ αβ Q,ω( )
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Figure 6: A) Simple square AF. B) Magnetic structure of La214. D) Magnetic structure
of bilayer Y123.

Since HTSC are "real materials" with 3D chemical structures, a coupling J' between
adjacent CuO2 layers needs to be added (Figure 6B). Furthermore, some HTSC contain
more than one CuO2 plane per unit-cell and additional intra-bilayer couplings Jb have to
be considered (Figure 6C, Y123 with 2 planes /unit-cell). Finally, if one consider as well
the out-of-plane anisotropy αz, the Hamiltonian takes the complicated form15,17:

H = J Sin
x S jn

x + Sin
y S jn

y + αzSin
z S jn

z( )
ij
∑

n=1,2
∑ + Jb Si1Si2 + J ' Sk1Sk2

k
∑

i
∑ (3)

where n is the label for two sublattices. A Holstein-Primakoff transformation of the
Hamiltonian allows to express the dispersions of the magnons in terms of the exchange
parameters J, Jb and J'. In the special case (n=2) where one neglects both the anisotropy
(αz=1) and interlayer components, J'=0 the magnon dispersions are given by:

  
hω±(q) = 2J +

Jb

2
 
 
 

 
 
 
2

− Jγ q( )±
Jb

2
 
 
 

 
 
 

2
(4)

where γ q( )= cos qxa( )+ cos qya( ), a being Cu-Cu separation. Both acoustic (+) and
optical (-) modes are present (see Figure 7) and can be experimentally distinguished by
their relative structure factors along the z-direction. While the acoustic structure factor is
proportional to sin2(πzQl) the optical one follows cos2(πzQl). In case one considers as

J J’

Jb

A) B) C)
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well interlayer coupling and out-of-plane anisotropy, additional lifting of the degeneracy
at low energies can be observed. The parameter J can be directly determined from the
slope of the low-energy acoustic branch, while Jb/J, J'/J and αz can be determined by
measuring the spin wave frequencies at zone center and zone boundary (see Figure 7). A
careful analysis of the neutron data17,18 for undoped Y123 yields the following
parameters: J˜100-120 meV, Jb/J˜0.02-0.1, J'/J˜2*10-4, αz˜0.8-3*10-3.

Mode n Zone Center (0,0,0) Zone boundary (0,0,0.5)
1 0 J ' J
2 α z /J J ' + αz( ) J
3 J '+Jb( ) J Jb J
4 J '+ Jb + αz( ) J J b + αz( ) J

Table 1: Zone center and zone boundary of the square of the magnon frequencies in units
of J.

Figure 7:schematic diagram of spin-wave dispersions in Y123 (from Ref. 17).



J. Mesot, Magnetism and Superconductivity 9

Figure 8: data from Ref. 19 taken at 30 K in Y123 (x=0.15). Left: constant E-scans along
(q,q,l0) showing the large magnon velocity along the (π,π ) direction. Right: constant q-
scans at the zone center (bottom) and zone boundary (top).

3.3 Superconducting Cuprates

In a simple metal, where the electronic interactions are believed to be weak, one would
expect a spin susceptibility with little momentum dependence and extending up to
energies defined by the bandwidth t ˜ eV and amplitude proportional to 1/t2 ˜  1  µB

2/eV.
In HTSC, many neutron scattering experiments have established the existence of strong
(> 100 µB

2/eV) antiferromagnetic correlations in both the normal and superconducting
states, thus showing the importance of the electronic interactions for the understanding of
these materials.

3.3.1 Normal State
While well-defined excitations exist in the undoped AF compound, the situation becomes
much more complicated for the doped materials. The cartoon shown in Figure 9
illustrates the main features found around optimal doping. In the normal state, some
broad excitations exist centered around (π,π). In La214 doped with Sr, these excitations
are peaked at some incommensurate wavector (π+δ,π)20,21 (See Figure 10). It was
furthermore shown that the incommensurability δ increases as a function of increasing
doping22. Whether some incommensurability also exists in the normal state of Y123 is
still debated23.
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Figure 9: cartoon of the spin excitations in HTSC. Below Tc, a strong renormalization of
the spectral weight occurs.
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Figure 10: (from Ref. 21) magnetic scattering in the normal state of La(Sr)214 (x=0.14).
The Q-cuts are represented by the dashed line in the inset.

Figure 11: La(Sr)124, x=0.17 a) Q-scans through the incommensurate wavevectors
(π+δ, π ) and (π, π+δ ) and ?E=4 meV; b) Energy scan at Q=(π+δ, π ), both in the normal
(blue squares) and SC (red triangles) states24.

3.3.2 superconducting state

The situation changes drastically as one enters the superconducting state since a strong
renormalization of the spectral weight distribution can be observed, whose two most
salient features are:

1) Opening of a spin gap: the observation, in the vicinity of the (π,π ) point, of a depletion
of the spectral weight at low-energies. This effect was observed both in La12425 (Figure
11) and Y12326,27 (Figure 12) compounds.
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2) Emergence of a resonance: in those superconductors having the highest Tc's (Y12326,
Bi221228) a strong build up of intensity is observed at energies larger than the spin gap
energy (Figure 12).
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Figure 12: Imaginary part of the odd spin susceptibility at the (π,π ) point measured at
various doping level in the superconducting state (T=5 K, right panel) (taken from
Ref. 27).
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 3.4 Origin of the spin susceptibility

At optimal doping, both the spin-gap and the resonance vanish above Tc. This fact,
together with the observation that the energy of the resonance scales with the
superconducting temperature (Er˜  5  kBTc)27 indicates that a tight link exists between the
magnetic and electronic degrees of freedom in these materials.

Based on itinerant magnetism approaches, many models29 have been proposed to explain
the observed magnetic excitations in HTSC. Basically, these models start from a Fermi
liquid picture where the Lindhard Function or non-interacting spin susceptibility χ 0  can
be written as:

  
χ0 q,ω( )≈

fk − fk+q

hω − εq+k −εk( )+ iδk
∑ (5)

where εk and fk are the electronic band dispersion and Fermi function. In the
superconducting phase the Cooper pairs have to be considered and χ0 becomes at T=030,

  
χ0 q,ω( )≈ 1−

∆ k∆k +q + εkεk +q

EkEk +q

 

 
 
 

 

 
 
 

fk + fk+q −1

hω − Ek + Ek +q( )+ iδk
∑ (6)

where ? k and Ek = εk
2 + ∆ k

2  are the SC-gap function and quasi-particle energy.

The term in the bracket [] is called the coherence factor and plays a crucial role to explain
the existence of spin fluctuations in HTSC. Imagine the following two cases in the limit
of ε--> 0:

1) isotropic SC-gap function

? k=|? | --> coherence factor = 0

2) gap function with sign change upon 90 degrees rotation (d-wave)

 ? k=-? k+(π,π) --> coherence factor = 2

Within such a Fermionic model, it follows from Eq. 6 that inelastic neutron scattering is
also probing, indirectly, the symmetry of the SC-function.

However, the susceptibility as expressed by Eq. 6 is not sufficient to explain the
measured inelastic neutron data, since the calculated values are by far too weak. It is
therefore necessary to consider an interacting susceptibility, which in an RPA
approximation becomes:

 χ q,ω( )=
χ 0 q,ω( )

1− J(q)χ 0 q,ω( )
(5)
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where one usually assumes J(q)=J/2[cos(qxa)+cos(qya)] to be the superexchange
interaction between Cu atoms separated by a distance a.

Within this RPA treatment most features (spin-gap, magnetic resonance and
incommensurate excitations) of the measured susceptibility ′ ′ χ q,ω( ) can be reproduced.
Figure 13 shows a calculation by Norman and Pépin31 based on experimentally
determined values of εk and ? k by means of ARPES. It should be however mentioned that
other scenarios such as those involving the presence of stripes32 or SO(5) super-
symmetry33 have also been invoked to explain the neutron scattering data.

Figure 13: RPA calculation of the dynamic susceptibility at ω=35 meV and 41 meV in
the superconducting state of HTSC (from Ref. 31).

3.5 Are the magnetic excitations relevant to SC?

So far we have only established that a tight link exists between the magnetic and
electronic degrees of freedom in HTSC. This, however, does not tell us whether the
magnetic excitations are relevant or not to superconductivity?

While it was shown that the spin susceptibility can be influenced by the details of the
electronic parameters, it has been proposed that the reverse situation is also true 34: the
strong renormalization (through Tc) of the spin susceptibility in the vicinity of the (π,π)
point can account for the renormalization of the spectral function at the (π ,0) point as
measured by ARPES (see Figure 14a). Within such an approach the peak-dip-hump
structure of the low-temperature spectral function results from the interaction of the
electrons with a collective mode (the magnetic resonance?) with the position of the dip
corresponding to the sum of both the SC-gap function (? 0) and collective-mode (Ω0)
energies (see Figure 14a). It was furthermore shown that the doping dependence of the

qx qx

qyqy
(π,π) (π,π)
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energy of the collective mode as inferred from ARPES measurements agrees well with
that of the resonance35. It remains to understand to what degree this renormalization of
the spectral function (via the magnetic resonance) allows a lowering of the total energy of
the system and consequently, a stabilization of the superconducting state36?

Figure 14: a) ARPES spectra (left) taken at the (π ,0) point in the normal (lower) and SC
(upper) states of Bi2212 (underdoped Tc=70 K). b) doping dependence of the energy of
the collective mode as inferred from ARPES data (blue circles35) and from the resonance
as inferred from inelastic neutron scattering (empty red circles: YBCO27), full red
symbols Bi221237.

4. The magnetic phase diagram of superconductors

The magnetic phase diagram of type-II superconductors (see Figure 15) can be divided in
three main regions: Meissner phase, mixed phase and normal phase. In the Meissner
phase, below the lower critical field Hc1(T), the magnetic flux is completely excluded
from the superconductor, whereas above the upper critical field Hc2(T) the normal state is
recovered and the magnetic field is homogeneously distributed into the sample. In the
mixed phase between Hc1(T) and Hc2(T) the magnetic flux can penetrate the
superconductor in the form of quantized magnetic vortices that interact together and
create a vortex lattice (VL). These vortices consist of magnetic flux lines of radius ξ (the
coherence length) surrounded by supercurrent screening the external field running over a
radius λ?  (the London-penetration depth).
Knowing that the magnetic field is confined to flux lines each carrying one flux quantum
Φo and arranged in a lattice, the symmetry of the VL is found by minimizing the free
energy. The result of these calculations for isotropic systems shows that the hexagonal
VL rather than the square VL is stabilized38.
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In high-temperature superconductors the situation is complicated because of thermal
fluctuations and anisotropy effects39. At high temperatures the vortices are thermally
activated and the VL can melt into a liquid phase above Hm(T) (see Figure 15). On the
other hand a sufficiently large degree of anisotropy can affect the symmetry of the VL.
We limit here the discussion to the low temperature part of the phase diagram.

Figure 15: schematic view of the magnetic phase diagram of HTSC.

4. 1 Small Angle Neutron Scattering

The prediction of Abrikosov1 that quantized magnetic vortices could, under certain
circumstances, penetrate the superconductors and build an ordered lattice was confirmed
in 1964 by Cribier et al.40 who were able to detect the vortex lattice by neutron scattering
experiments. The diffraction of the neutrons by a magnetic vortex lattice occurs because
the neutron, due to its magnetic moment, experiences a spatially varying potential. For a
square lattice, the spacing of vortex planes d = Φ0 B  ( Φ0 is a flux quantum) is of the
order of several 100 Å at 1 Tesla and neutrons having long wavelength (5-20 Å) are
required. Since the Bragg condition is fulfilled for angles of the order of a fraction of a
degree, small angle scattering (SANS) instruments have to be used. A schematic view of
the SANS-I instrument41 at the Paul Scherrer Institute is displayed in Figure 16.

The neutron intensity being proportional to λL
-4, SANS observation of the vortex lattice in

HTSC (λL ˜ 1000-2000 Å) is extremely demanding and the first report of a vortex lattice
in HTSC was realized by Forgan et al.42 on Y123. In subsequent studies it was shown
that at low-fields the lattice has a hexagonal symmetry43 (Figure 17a). At higher fields,
earlier44 and very recent45 experiments indicate a transition toward a square VL in Y123.
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Due to the extremely large anisotropy a well-defined hexagonal VL in Bi2212 could only
be observed at very low fields46 (see Figure 17b). In La214, it is only very recently that it
has been possible to observe a well-defined VL47. As shown in Figure 18 the
experimental results indicate that, in slightly overdoped La(Sr)214 (x=0.17), a hexagonal
pattern exists at low-fields. An intrinsic square vortex lattice (oriented along the Cu-O-Cu
bonds) exists at fields larger than 0.4 Tesla. One should notice however that in Y123 the
square VL is oriented at 450 from the Cu-O-Cu bonds45.

Figure 16: Schematic view of the SANS-I instrument at PSI.

An intrinsic fourfold-symmetry is indicative of the coupling of the VL to some source of
anisotropy. Square VL resulting from the anisotropic (d-wave) nature of the
superconducting gap via the increasing importance of the anisotropic vortex cores at high
fields have been theoretically predicted48. In principle other sources of anisotropy, such
as those involving Fermi surface/velocity anisotropies49, dynamical stripes or charge-
density waves, could lead to the formation of a square vortex lattice. It remains a
challenge to corroborate detailed small angle neutron scattering measurements with other
microscopic data in order to explain the origin of this exotic vortex behaviour.

Figure 17: Low-T VL pattern obtained in a) Y123 at 0.2 T with the field applied 33
degrees away from the c-axis43 and b) in Bi221246 at  0.05 T.
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Figure 18: Low-temperature diffraction pattern obtained on La(Sr)214 (x=0.17) at
a) B = 0.1 T applied 10 degrees away from the c-axis and at b)  B = 1 T applied parallel
to the c-axis.
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