BAROTRON GHRESOLUTION 2D DET

SING LIGHT TO SEE NEUTRON

Laboratoire Léon Brillouin (CEA-CNRS)

P. Baroni, L. Noirez

Brevet France n°: 0502379 (2005), Dépôt: PCT n°: EP2006/060611 (2006) http://iramis.cea.fr/Phocea/Vie_des_labos/Ast/ast.php?t=brevet&id_ast=1276

haracterístics :

~ 520x520 pixel Multidetector - Spatial resolution : 0.25mm,

Gas-chambers: BF ₃ , ³ He, Micro-strips	Solid detectors:	
	Gd Image Plate	BAROTRON
Advantages: - short time response, - Weak electronic background.	Advantages: - Versatile and easy use, - High resolution (typically: 520x520 pixels, pixel:0.5mm)	Advantages: - Easy use, - High resolution (520x520 pixels, pixel: <0.5mm)
Drawbacks:		- Short time response:

MAMI

Magnetics and Microhydrodynamics

hée

Laboratoire Léon Brilloui

This projets has partialy received funding from European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N°766007

- high sensitivity: very low threshold: <1 neutron/cm²/s.
- -Selectively sensitive to neutron radiation (no gamma, no X ray sensitivity, no memory effects)
- True 16 bits storage (64000 levels): Fits or txt format, -linear time-dependence..
- l(counts/s) 6 10⁴ 4 10⁴ 2 10[∔] pixels 200 300 100 ച്ചറ
- PTFE (teflon*) stretched along the c axis (horizontal): elongation rate : 700%

Neutron diffraction on Silica samples: Polymorphism of Silica

- Drawbacks:
- Toxic or rare (³He) - High costs,
- Low spatial resolution (large pixels $> 5 \times 5$ mm) - Large samples

Drawbacks:

- slow photoemission: 0.1s
- slow relaxation: 0.9s relaxation.
- γ and X radiation sensitive,
- memory effects (Baryum activation),
- γ production.
- Built for X radiation. NOT
- adapted for neutron detection (γ sensitive and γ productive).

- Fast photoemission: 110 ns

- Fast relaxation time: 200 ns

- Neutron selective:

2D gas detector (PAXY)

Performances : real time - identical conditions 2D Solid detector (Barotron)

2,5A Sample-detector distance= 45 mm, I=2.662Å⁻¹, acquisition time: 900s. L. Noirez, P. Baroni, Applied Physics Letters 90 (2007).

0.14Å⁻¹

2Å -1

SANS Spectrometer (PAXY): t=180s 7 metres, 5 tonnes, 128*128 cells.

SANS Barotron: t=180s 35 Kg, 0.50m, 520*520 pixels.

• Sílica from Neolíthic flints (sílex) collaboration with Ph. Sciau, N. Ratel-Ramond, CEMES) and V. Léa (TRACES) Non-destructive analysis of archaelogical tools

Freated vs natural flints: ~ Identical peak positions: - Background increased -> H_2O trapped in heated flints!

Heating closes the porosity -> water is conserved -> improved mechanical properties

The presented Neutron Patterns

