Resonant soft-x-ray diffraction from electronic order

Christian Schüßler-Langeheine Universität zu Köln

- Resonant soft x-ray diffraction
- Stripe order in $La_{2-x}Sr_{x}NiO_{4}$
- Charge and orbital order in Fe_3O_4

Resonant Scattering

Resonant scattering

- probing the intermediate states
 - element specific
 - sensitive to oxidation state
 - sensitive to orbital orientation
 - sensitive to magnetic moments
- + probing a certain periodicity
- = spectroscopically resolved structure study

Resonant soft x-ray scattering

$ m\rangle$ $ m\rangle$ $ m\rangle$ $ n\rangle$	Ion	Excitation	Edge
	Transition metals	$2p \rightarrow 3d$	L_{2}, L_{3}
	Oxygen	$1s \rightarrow 2p$	K
	Lanthanides	$3d \rightarrow 4f$	M_4, M_5

- intermediate state determines system properties
- well understood transitions, theoretical treatment available
- very high scattering cross sections
- long photon wavelength -> small accessible momentum space

Soft x-ray diffractometer at BESSY

$La_{2-x}Sr_{x}NiO_{4}$

- first neutron study of charge order
- isostructural to La_{2-x}Sr_xCuO₄
- not superconducting
- stripe phase at low temperatures

Symmetry of the doped holes?

O-K (1s->2p) XAS, P. Kuiper et al., PRB 44, 4570 (1991)

Well-developed order

charge

200

40

Energy dependence

Intensity

Polarization dependence

Polarization dependence

 $f_{\rm mag} \propto (\hat{\varepsilon}' \times \hat{\varepsilon}) \cdot \vec{m}$

Polarization dependence

Cluster calculation

- excited state is strongly localized \rightarrow NiO_6-cluster calculation possible
- full atomic multiplet calculation
- |n>, E_n: 3d 3d Coulomb, exchange, spin-orbit interaction, 3d - O-2p hybridization
- H_m: 2p core-hole 3d Coulomb and exchange interaction, 2p spin-orbit interaction

Results

one single model describes all three spectra

- hole mainly on in-plane oxygen ions -> strong 2d character
- hole-rich: 7.9 *d*-electrons, hole-poor: 8.2
- afm coupling between Ni and hole spins (like Zhang-Rice singlet)

very similar to cuprates

Sensitivity

Summary so far

- directly observed charge ordering in $La_{1.8}Sr_{0.2}NiO_4$
- scattering contrast due to difference in the electronic state of the Ni ions
- spectroscopic information about the ordered part of the system
- realistic microscopic theory available
- 2-dimensional character of the doped holes
- holes reside mainly on the oxygen ligands and couple antiferromagnetically to the canted Ni spin

PRL 95, 156402 (2005)

Magnetite (Fe_3O_4)

Inverse spinel structure above 122 K
1/3: tetrahedral (A-site) Fe³⁺
2/3: octahedral (B-site) Fe³⁺, Fe²⁺
A-site , B-site , T_c ~ 860K

>Verwey transition , T_{V} = 122 K

Electronic structure of the low-temperature phase still unknown

Proposed structure

PHYSICAL REVIEW B 66, 214422 (2002)

Oxygen K-edge resonant diffraction

PRL 96, 096401 (2006)

PHYSICAL REVIEW LETTERS

week ending 10 MARCH 2006

Charge-Orbital Ordering and Verwey Transition in Magnetite Measured by Resonant Soft X-Ray Scattering

D. J. Huang,^{1,2,*} H.-J. Lin,¹ J. Okamoto,¹ K. S. Chao,² H.-T. Jeng,³ G. Y. Guo,^{4,1} C.-H. Hsu,¹ C.-M. Huang,¹ D. C. Ling,⁵ W. B. Wu,² C. S. Yang,¹ and C. T. Chen^{1,4}

40 nm Magnetite (Fe_3O_4) / MgO

peak broadening in thin film -> (001/2) and (001) observable

40 nm Magnetite/MgO

(001) resonates at both B-site absorption maxima: charge order

(001/2) resonates only at the 2+ B-site absorption maximum: only orbital degree of freedom

Conclusion

- experimental approach for spatial modulations of the electronic state
- particularly powerful at transition-metal $L_{2,3}$ and rareearth $M_{4,5}$ resonances -> microscopic theory
- charge and spin order in $La_{1.8}Sr_{0.2}NiO_4$ similar to cuprate
- \cdot charge and orbital order in Fe $_3O_4$ described by different modulation vectors

People

<u>Cologne University:</u>

Justina Schlappa Roger Chang Holger Ott Maurits Haverkort Zhiwei Hu Mohamed Benomar Markus Braden Hao Tjeng

<u>Hiroshima</u> <u>University:</u> Arata Tanaka

FU Berlin:

Enrico Schierle Eugen Weschke