Magnetic order in the pseudogap phase of $YBa_2Cu_3O_{6+x}$

Philippe Bourges Laboratoire Léon Brillouin-Saclay

Polarized elastic Neutron Scattering experiments 4F1 (LLB-Saclay) Magnetic order in the pseudogap phase of $YBa_2Cu_3O_{6+x}$

Philippe Bourges Laboratoire Léon Brillouin-Saclay

Polarized elastic Neutron Scattering experiments 4F1 (LLB-Saclay)

□ B. Fauqué, Y. Sidis (LLB-Saclay)

□ S. Pailhès (PSI-Villigen) V. Hinkov (MPI-Stuttgart)

□ X. Chaud (CRETA-Grenoble)

Thanks: B. Keimer, L. Pinstchovius for samples.

Outline

- 1. Cuprates and Pseudogap: circulating currents phase
- 2. Polarized neutron experiments
- 3. Results: magnetic order in underdoped $YBa_2Cu_3O_{6+x}$
- 4. Hidden order for the pseudogap phase

 $\begin{array}{l} \mathbf{La_{2-x}(Sr,Ba)_xCuO_4}\\ \mathbf{YBa_2Cu_3O_{6+x}} \end{array}$

 $\begin{array}{l} Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}\\ Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+\delta} \end{array}$

 $\mathbf{Tl_2Ba_2CuO_{6+\delta}}$

 $\begin{array}{c} La_{2-x}(Sr,Ba)_{x}CuO_{4} \\ YBa_{2}Cu_{3}O_{6+x} \\ Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} \\ Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+\delta} \end{array}$

 $Tl_2Ba_2CuO_{6+\delta}$

Normal state: "bad metal"

- $ho \propto T$
- ARPES: no well-defined
 - Quasi-Particles above T_C

 $\begin{array}{l} \mathbf{La_{2-x}(Sr,Ba)_xCuO_4}\\ \mathbf{YBa_2Cu_3O_{6+x}} \end{array}$

 $\begin{array}{l} \mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}}\\ \mathbf{Bi_2Sr_2Ca_2Cu_3O_{10+\delta}} \end{array}$

 $Tl_2Ba_2CuO_{6+\delta}$

Normal state: "bad metal"

- $ho \propto T$
- ARPES: no well-defined
 - Quasi-Particles above T_C

 $\begin{array}{l} \mathbf{La_{2-x}(Sr,Ba)_xCuO_4}\\ \mathbf{YBa_2Cu_3O_{6+x}} \end{array}$

 $\begin{array}{l} \mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}}\\ \mathbf{Bi_2Sr_2Ca_2Cu_3O_{10+\delta}} \end{array}$

 $Tl_2Ba_2CuO_{6+\delta}$

Normal state: "bad metal"

- $ho \propto T$
- ARPES: no well-defined
 - Quasi-Particles above T_C

Role of AF fluctuations Yvan Sidis

$YBa_{2}Cu_{3}O_{6+x} \\$

Susceptibility

⁸⁹Y NMR Knight shift

H. Alloul et al., PRL 63, 1700 (1989).

 $YBa_{2}Cu_{3}O_{6+x} \\$

⁸⁹Y NMR Knight shift
H. Alloul *et al.*, PRL 63, 1700 (1989).

T. Ito et al., PRL 70, 3995 (1993).

 $YBa_{2}Cu_{3}O_{6+x} \\$

H. Alloul et al., PRL 63, 1700 (1989).

T. Ito et al., PRL 70, 3995 (1993).

Pseudogap behaviour in many physical properties below T^{*}: Transport, magnetic properties, Thermodynamics, Tunneling, ARPES, Raman scattering, Optical conductivity,... J. Tallon et al, cond-mat/0211048

Anomalous normal state

 $\begin{array}{l} \mathbf{La_{2-x}(Sr,Ba)_xCuO_4}\\ \mathbf{YBa_2Cu_3O_{6+x}} \end{array}$

 $\begin{array}{l} \mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}}\\ \mathbf{Bi_2Sr_2Ca_2Cu_3O_{10+\delta}} \end{array}$

 $Tl_2Ba_2CuO_{6+\delta}$

- 2D Fermi surface

Anomalous normal state

 $\begin{array}{l} \mathbf{La_{2-x}(Sr,Ba)_xCuO_4}\\ \mathbf{YBa_2Cu_3O_{6+x}} \end{array}$

 $\begin{array}{l} \mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}}\\ \mathbf{Bi_2Sr_2Ca_2Cu_3O_{10+\delta}} \end{array}$

 $Tl_2Ba_2CuO_{6+\delta}$

- 2D Fermi surface
- Fermi arcs

Underdoped state:

Pseudogap effect in magnetic and charge properties

Pseudogap behaviour in many physical properties

Pseudogap behaviour in many physical properties

Pseudogap behaviour in many physical properties

Pseudogap behaviour in many physical properties

Hidden order parameter: SDW, CDW, Circulating Currents, DDW,... (S.C. Zhang et al, C. Di Castro et al, C.M. Varma, S. Chakravarty et al, ...)

Charge currents: DDW and Circulating currents

Charge currents: DDW and Circulating currents

 \Rightarrow Orbital moments \perp CuO₂ plane measurable with neutrons

Charge currents: DDW and Circulating currents

 \Rightarrow Orbital moments \perp CuO₂ plane measurable with neutrons

- Dichroism in ARPES \Rightarrow Phase Θ_{II} Kaminski et al, *Nature* 416, 610 (2002) (Not reproduced Borisenko et al, *Nature* 431, (2 September 2004))

- Dichroism in ARPES \Rightarrow Phase Θ_{II} Kaminski et al, *Nature* 416, 610 (2002) (Not reproduced Borisenko et al, *Nature* 431, (2 September 2004)) 2 types of Domains:

2

1

- Dichroism in ARPES \Rightarrow Phase Θ_{II} Kaminski et al, *Nature* 416, 610 (2002) (Not reproduced Borisenko et al, *Nature* 431, (2 September 2004)) 2 types of Domains:

- Dichroism in ARPES \Rightarrow Phase Θ_{II} Kaminski et al, *Nature* 416, 610 (2002) (Not reproduced Borisenko et al, *Nature* 431, (2 September 2004))

2 types of Domains:

Structure factor:

 $|F_M|_{tot}^2 =$

 $\frac{1}{2}[|F_M|_{D1}^2 + |F_M|_{D2}^2]$

 ${f H}\simeq 10~{f G},~ec{P}//ec{H}$ Flipping ratio: ${f R}\sim 30\text{-}50$ Polarization: ${f P}\sim 0.97\text{-}0.98$

 ${f H}\simeq 10~{f G},~ec{P}//ec{H}$ Flipping ratio: ${f R}\sim 30\text{-}50$ Polarization: ${f P}\sim 0.97\text{-}0.98$

 $\vec{M}_Q = \sum \vec{M} \exp^{-i\vec{Q}\vec{r}}$

 ${
m H}\simeq 10~{
m G},~ec{P}//ec{H}$ Flipping ratio: R $\sim 30\text{-}50$ Polarization: P $\sim 0.97\text{-}0.98$

 $\vec{M}_Q = \sum \vec{M} \exp^{-i\vec{Q}\vec{r}}$

Magnetic components $\perp \vec{Q}$ Spin-flip components $\perp \vec{P}$

 \Rightarrow P//Q to maximize magnetism in the SF channel

Polarized cold neutron triple axis: 4F1 (LLB-Saclay)

A-type antiferromagnetism in Na_xCoO_2 , x=0.82 S.P. Bayrakci et al, PRL 94, 157205 (2005)

- Spin dynamics \Rightarrow Propagation wavevector: Q=(001) \Rightarrow Polarized neutrons

A-type antiferromagnetism in Na_xCoO_2 , x=0.82 S.P. Bayrakci et al, PRL 94, 157205 (2005)

- Spin dynamics \Rightarrow Propagation wavevector: Q=(001) \Rightarrow Polarized neutrons
- "Normalized spin-flip intensity": SF/NSF

A-type antiferromagnetism in Na_xCoO_2 , x=0.82 S.P. Bayrakci et al, PRL 94, 157205 (2005)

- Spin dynamics \Rightarrow Propagation wavevector: Q=(001) \Rightarrow Polarized neutrons
- "Normalized spin-flip intensity": SF/NSF

- Ferromagnetic planes AF coupled: decoration of the unit cell - Small moments: m $\simeq 0.13 \ \mu_B$ /Co Polarized magnetic diffraction at $k_I = 2.662$ Å⁻¹

- Magnetism expected on $Q=(1,0,L)\equiv(0,1,L)$ in Phase Θ_{II}
- Weak Nuclear Bragg peaks: L=1,2
- For $\vec{P}//\vec{Q}$, All magnetism \Rightarrow Spin-Flip

Polarized magnetic diffraction at $k_I = 2.662$ Å⁻¹

- Magnetism expected on $Q=(1,0,L)\equiv(0,1,L)$ in Phase Θ_{II}
- Weak Nuclear Bragg peaks: L=1,2
- For $\vec{P}//\vec{Q}$, All magnetism \Rightarrow Spin-Flip

NSF:
$$\frac{d\sigma}{d\Omega} = |F_N|^2$$

SF: $\frac{d\sigma}{d\Omega} = |F_M|^2 + |F_N|^2/R$
 $R \sim 40$

Polarized magnetic diffraction at $k_I = 2.662 \text{ Å}^{-1}$

- Magnetism expected on $Q=(1,0,L)\equiv(0,1,L)$ in Phase Θ_{II}
- Weak Nuclear Bragg peaks: L=1,2
- For $\vec{P}//\vec{Q}$, All magnetism \Rightarrow Spin-Flip

B. Fauqué et al, PRL 96, 197001 (2006)

Raw data Spin-Flip and Non-Spin-Flip: $\vec{P}//\vec{Q}$,

Twinned samples: $Q=(0,1,1)\equiv(1,0,1)$

YBCO_{6.6}(t): $T_C = 61$ K

Raw data Spin-Flip and Non-Spin-Flip: $\vec{P}//\vec{Q}$,

Twinned samples: $Q=(0,1,1)\equiv(1,0,1)$

Novel magnetic order: $\vec{P}//\vec{Q}$

$$\mathbf{Q}{=}(0,1,1){\equiv}(1,0,1)$$

$$|F_M|^2 = |F_N|^2 [SF/NSF - 1/R]$$

$YBa_2Cu_3O_{6+x}$

x	$\mathbf{T}_{c,onset}$ (K)	${ m T}_{mag}({ m K})$
$O_{6.5}(t)$	ud 54	300 ± 10
$O_{6.6}(t)$	ud 61	250 ± 20
$O_{6.6}(d)$	ud 64	220 ± 20
$O_{6.75}(t)$	ud 78	170 ± 30
$Ca(15\%) - O_7(t)$	od 75	$\simeq 0$

t: twinned, d: detwinned

Novel magnetic order: $\vec{P}//\vec{Q}$

$$\mathbf{Q}{=}(0,1,1){\equiv}(1,0,1)$$

$$|F_M|^2 = |F_N|^2 [SF/NSF - 1/R]$$

$YBa_2Cu_3O_{6+x}$

x	$\mathbf{T}_{c,onset}$ (K)	$T_{mag}(K)$
$O_{6.5}(t)$	ud 54	300 ± 10
$O_{6.6}(t)$	ud 61	250 ± 20
$O_{6.6}(d)$	ud 64	220 ± 20
$O_{6.75}(t)$	ud 78	170 ± 30
$Ca(15\%) - O_7(t)$	od 75	$\simeq 0$

t: twinned, d: detwinned

No effect on Q=(0,0,2)(open symbols)

$$\vec{M} = (M_a, M_b, M_c)$$

at $\vec{Q} = (H, K, L)$

$$\vec{P} / / \vec{z}$$
:

$$\mathbf{I} = 0.1 \frac{1}{2} (|M_a|^2 + |M_b|^2) + 0.9 |M_c|^2$$

$$\vec{P} \perp \vec{Q}$$
:

$$\mathbf{I} = \frac{1}{2} (|M_a|^2 + |M_b|^2)$$

$$\vec{M} = (M_a, M_b, M_c)$$

at $\vec{Q} = (H, K, L)$
 $\vec{P} / / \vec{z}$:
 $\mathbf{I} = 0.1 \frac{1}{2} (|M_a|^2 + |M_b|^2) + 0.9 |M_c|^2$
 $\vec{P} \perp \vec{Q}$:
 $\mathbf{I} = \frac{1}{2} (|M_a|^2 + |M_b|^2)$
 $\tan(\phi) = \sqrt{\frac{M_a^2 + M_b^2}{M_c^2}}$

 $\Rightarrow \phi = 45^{\circ} \pm 20^{\circ}$

 \Rightarrow Long range order at 75 K

Momentum dependencies in YBCO_{6.5}(t): $\vec{P}//\vec{Q}$

 \Rightarrow Long range order at 75 K

Momentum dependencies in $YBCO_{6.5}(t)$: $\vec{P}//\vec{Q}$

 $|F_M|^2 =$ $|F_N|^2 [SF/NSF - 1/R]$ **P** // **Q** (0,1,0)(0,1,1)(0,1,2) x3 co^on^ono^oo_n^o 50 200 250 300 350 100 150 Temperature (K)

- L-dependence: as $\cos(\pi z L)^2$
- \Rightarrow parallel moments within a bilayer

Magnetic order in underdoped $YBa_2Cu_3O_{6+x}$: B. Fauqué et al, PRL 96, 197001 (2006)

- preserves Translationnal Symmetry of the Lattice
- Decoration of the unit cell with staggered moments

Magnetic order in underdoped $YBa_2Cu_3O_{6+x}$: B. Fauqué et al, PRL 96, 197001 (2006)

- preserves Translationnal Symmetry of the Lattice
- Decoration of the unit cell with staggered moments
- In-plane and Out-of-plane magnetic components: $\phi = 45^\circ \pm 20^\circ$
- Parallel moments within the $(CuO_2)_2$ bilayer
- Long Range Order at low temperature: $(\xi > 100 \text{ Å})$
- Static at the neutron scale (10^{-11} sec)

Magnetic order in underdoped $YBa_2Cu_3O_{6+x}$: B. Fauqué et al, PRL 96, 197001 (2006)

- preserves Translationnal Symmetry of the Lattice
- Decoration of the unit cell with staggered moments
- In-plane and Out-of-plane magnetic components: $\phi = 45^\circ \pm 20^\circ$
- Parallel moments within the $(CuO_2)_2$ bilayer
- Long Range Order at low temperature: ($\xi > 100$ Å)
- Static at the neutron scale (10^{-11} sec)
- Weak intensity $\sim 2 \text{ mbarns} \Rightarrow M \sim 0.05 \text{ to } 0.1 \ \mu_B$ (assuming weakly dependent magnetic form factor)

Orbital moments

Circulating Currents Phase Θ_{II}

Simon and Varma, PRL 89 247003 (2002)

C.M. Varma, PRB 73, 155113 (2006)

Orbital moments

Circulating Currents Phase Θ_{II}

Simon and Varma, PRL 89 247003 (2002)

C.M. Varma, PRB 73, 155113 (2006)

Why in-plane component ?

Orbital moments

Circulating Currents Phase Θ_{II}

Simon and Varma, PRL 89 247003 (2002)

C.M. Varma, PRB 73, 155113 (2006)

- Why in-plane component ? - Spin-orbit coupling
- V. Aji and C.M. Varma cond-mat/0605468 $\,$

Simon and Varma, PRL 89 247003 (2002)

C.M. Varma, PRB 73, 155113 (2006)

- Why in-plane component ? - Spin-orbit coupling
- V. Aji and C.M. Varma cond-mat/0605468 $\,$

Spins on oxygen sites

Circulating Currents Phase Θ_{II} Simon and Varma, PRL 89 247003 (2002) C.M. Varma, PRB 73, 155113 (2006)

Why in-plane component ? - Spin-orbit coupling V. Aji and C.M. Varma cond-mat/0605468

Why out-of-plane component ?

Spins on oxygen sites

Relation with the Pseudogap: Resistivity

T. Ito et al., PRL 70, 3995 (1993).

T. Ito et al., PRL 70, 3995 (1993).

Relation with the Pseudogap: Resistivity

T. Ito et al., PRL 70, 3995 (1993).

Phase diagram: magnetic order at T^*

B. Fauqué et al, Phys. Rev. Lett. 96, 197001 (2006)

 \Rightarrow Hidden order parameter for the pseudogap phase

Phase diagram: magnetic order at T^*

B. Fauqué et al, Phys. Rev. Lett. 96, 197001 (2006)

 \Rightarrow Hidden order parameter for the pseudogap phase

 $\Rightarrow \text{Magnetic decoration of the unit cell} \\ \text{Circulating Currents phase } \Theta_{II} \text{ C.M. Varma, PRB 73, 155113 (2006)}$

Phase diagram: magnetic order at T^*

B. Fauqué et al, Phys. Rev. Lett. 96, 197001 (2006)

 \Rightarrow Hidden order parameter for the pseudogap phase

⇒ Magnetic decoration of the unit cell Circulating Currents phase Θ_{II} C.M. Varma, PRB 73, 155113 (2006) ⇒ 3 band Hubbard model