Modélisation de la densité électronique : apport des

rayonnements synchrotron et neutronique et applications

- Claude Lecomte,
- Slimane Dahaoui, Pilar Garcia,
- Sebastien Pillet , Vincent Legrand,
- Nicolas Claiser, Mohamed Souhasssou,
- Emmanuel Aubert ,Florence Porcher
- Noel Lugan (LCC Toulouse)
- LCM3B, UMR CNRS 7036
- Claude.lecomte@lcm3b.uhp-nancy.fr

OUTLINE

- Structure factor and electron density analysis Multipole Model, topological analysis and electrostatics
- . Applications to Quantum Chemistry :Chemical Bonding Phase transitions :TTF CA Metasatable states :Thermal and photoexcited molecules Material Science : Electrostatics in zeolite
- Problems with heavy elements and need of SR

X-ray case

Charge density refinement

 $IBragg = K^* \Gamma^2 * F^2$

F²: **Structural Informations**

Accurate structure of metastables states Anisotropic displacement parameters Valence electron density

depends on sin(theta) / lambda resolution

What we 'see' is the **Dynamic Electron Density** which is therefore the Inverse Fourier Transform of the Dynamic Structure Factors

 $\rho(\vec{r}) = \rho(\vec{r})_{stat} \otimes P(u)$ Atom probability density function

Convolution theorem

$$F\left(\vec{H}\right) = F\left(\vec{H}\right)_{stat} T\left(\vec{H}\right)_{DebyeWaller}$$

$$F_{\text{stat}}(\vec{H}) = \sum_{j=1}^{Na} f_j(\vec{H}) \exp(2i\pi \vec{H}.\vec{r})$$

f j : scattering factor : Fourier transform of the electron density of atom j

Crystal structure refinement: X, Y, Z, U^{ij}

X-X xyz, U^{ij} from HO data but what about H atoms ?

<u>The aspherical atom refinement</u> must start with these positional and thermal parameters

Scattering factors normalized at 1 e-

Å-1

X-n and HO refinement

• <u>- X-n method</u> (Coppens Science, 158, 1577 (1967))

$$F_n(\vec{H}) = \sum_{j=1}^{Nat} b_j \exp 2\pi i \vec{H} \cdot \vec{r} T_j(\vec{H})$$
(x,y,z) and thermal (Uij)

- High order refinement (H.O) uses FT properties

$$f(\vec{H}) = \int_{V} \rho(\vec{r}) \exp 2\pi i \vec{H} \cdot \vec{r} \, d^{3}\vec{r}$$

Main ideas and advantages of the aspherical electron density model

$$\rho^{at}(\vec{r}) = \rho_1^{at}(\vec{r}) + \delta\rho^{at}(\vec{r})$$

Atomic Orthogonal Frame Allows to take into account the atomic local symmetry

. Symmetry restrictions of the multipole have been given by Kurki-Suonio (Israël J. of Chemistry, **16**, 115-123, 1977).

An example sp2 carbon atom

Electron density difference map $\Delta \rho_{exp} = FT^{-1} (F_o - F_{c_{sph}})$

 \rightarrow Radial functions: maximas at the middle of the bonds

→ Angular functions: 3 fold symmetry Y_3^m (Stewart 1976) or trig cos³ θ (Hirshfeld 1975) HANSEN COPPENS MULTIPOLE MODEL coded in Molly and MOPRO programs

$$\rho(\mathbf{r}) = \rho_{c}^{s}(\mathbf{r}) + \kappa^{3} \mathbf{P}_{v} \rho_{v}^{s}(\mathbf{\kappa}.\mathbf{r}) + \sum_{l=0,lmax} \kappa^{3} R_{l}(\mathbf{\kappa}'.\mathbf{r}) \sum_{m=\pm l} \mathbf{P}_{lm} Y_{lm}(\theta,\phi)$$

$$R_{l}(r) = \frac{\xi_{l}^{n_{l}+3}}{(n_{l}+2)!} r^{n_{l}} e^{-\xi_{l}.r}$$

Octupolar real spherical harmonic (*I;m*)=(3;+3)

Hansen & Coppens (1978). *Acta Cryst.* A**34**, 909-921. Jelsch ,Guillot, Lagoutte and Lecomte 2004 *J. Appl. Cryst* , **38**, 38-54.

Topological analysis

Critical points $\vec{\nabla}\rho = \vec{0}$

Hessian matrix $H_{ij} = \frac{\partial^2 \rho}{\partial x_i \partial x_j}$

Diagonalisation to get eigenvalues (curvatures λ_i and eigenvectors)

Classification CP(W,σ)

W: number of non zero eigenvalues σ : Σ signs = signature

CP

 $\begin{array}{rll} 3,-3 & \mbox{attractor:} \\ 3,+3 & \mbox{cage} \\ 3,+1 & \mbox{cycle} \\ 3,-1 & \mbox{interaction} \\ \lambda_1, \lambda_2 < 0 ==> \mbox{maximum} \\ \lambda_3 & >0 ==> \mbox{minimum} \end{array}$

Topological analysis

- Gradient trajectories $\vec{\nabla}\rho(\vec{r}) = \frac{\partial\rho(\vec{r})}{\partial x}\vec{i} + \frac{\partial\rho(\vec{r})}{\partial y}\vec{j} + \frac{\partial\rho(\vec{r})}{\partial z}\vec{k}$ - Laplacien $\nabla^2 = \sum_{i=1}^3 \frac{\partial^2 \rho}{\partial x_i^2} \quad \nabla^2 > 0 \qquad E_c, \text{ dilution}$ $\nabla^2 = \sum_{i=1}^3 \frac{\partial^2 \rho}{\partial x_i^2} \quad \nabla^2 < 0 \qquad E_p, \text{ concentration}$

- Interatomic Surface

$$\vec{\nabla}\rho(\vec{r})\cdot\vec{n}(\vec{r})=0$$

- Bond Path: direct interactions

Topological integration: charges and atomic volumes

Interatomic surfaces define atomic basins

Integration on atomic basins (NEWPROP, Souhassou, Nancy) defines

-Atomic Volume and related electronic properties

Charge:
$$q(V) = Z - \int_{V} \rho(\vec{r}) d^{3}\vec{r}$$

Electrostatic potential calculation Electros (Ghermani , Lecomte et Al)

$$V(r) = V_{core}(r) + V_{val}(r) + \Delta V(r)$$

with

$$V_{core}(r) = \frac{Z}{|r-R|} - \int \frac{\rho core(r')}{|r-R-r'|} d^3r'$$

and

$$V_{val}(r) = -\int P_{val} / \kappa'^{3} \frac{\rho_{val}(\kappa'r')}{|r-R-r'|} d^{3}r'$$

$$\Delta V(\mathbf{r}) = 4\pi \sum_{lm} \frac{\kappa'' P_{lm}}{2l+1} \left[\frac{1}{\kappa''^{l+1} |\mathbf{r} - \mathbf{R}|^{l+1}} \int_{0}^{\kappa'' |\mathbf{r} - \mathbf{R}|} t^{l+2} Rnl(t) dt + \kappa''^{l} |\mathbf{r} - \mathbf{R}|^{l} \int_{\kappa'' |\mathbf{r} - \mathbf{R}|}^{\infty} \frac{1}{t^{l-1}} Rnl(t) dt \right] y_{lm} \pm (\theta', \phi')$$

OUTLINE

Structure factor and electron density analysis Multipole Model, thermal motion analysis and electrostatics

Applications to Quantum Chemistry :Bonding Phase transitions :TTF CA Metasatable states :Thermal and photoexcited molecules Material Science : Electrostatics in zeolite

Problems with heavy elements and need of SR

I) Experimental Charge density and topologyof the B-N bond

Nicolas Claiser thèse de l'université Henri Poincaré Nancy1, 2003

EXPERIMENTAL STATIC DEFORMATION DENSITY

B-N deformation density

Polarisation of the electron density towards the N atom : this observation may be quantified by the topological analysis of rho

Topological properties of the B-N and B-H bonds

$$q(V) = Z - \int \rho(\vec{r}) d^3 \vec{r}$$

Neutral phaseTTF CAIonic phaseP21/nPn

a = 7.230(1) Å, b = 7.595(1) Å, c = 14.499(1) Å, $\beta = 99.1(1)^{\circ}$

a = 7.191(1) Å, b = 7.540(1) Å, c = 14.441(1) Å, $\beta = 98.6(1)$

P Garcia these de UHP 2007

Crystallographic Experiments :TTF-CA

	TTF-CA	TTF-CA
Formula	$C_{12}S_4Cl_4O_2H_4$	$C_{12}S_4Cl_4O_2H_4$
М	900.38	900.38
T(K)	105	15
Crystal System	Monoclinic	Monoclinic
Space Group	P2 ₁ /n	Pn
Cell Parameters	a= 7.2297(5) Å b= 7.5933(3) Å c=14.4980(9) Å β =99.15(3)°	a= 7.1999(9) Å b= 7.5556(6) Å c=14.479(1) Å β =98.511(8)°
Volume (Å ³)	786.2 (2)	779.0(5)
Ζ	2	2
Réfl. Measured / uniques	168470 / 9237	75177 / 14634
$ \begin{array}{c} \mu(\text{Mo-K}\alpha) (\text{mm}^{-1}), \\ \text{Résolution} (\text{\AA}^{-1}) \end{array} $	1.28, 1.14	1.29, <mark>1.16</mark>
Internal agreement R _{int}	0.0364	0.0266
R (I>3σ(I)) End of multipole refinement	0.0139	0.0124

Neutral Phase: Static Déformation Density

1

Contours, 0.05 eÅ⁻³

$$\Delta \rho_{stat}(\mathbf{r}) = \sum_{j=1}^{N_{atoms}} \left\{ \left[P_{\nu} \kappa^{3} \rho_{\nu}(\kappa \mathbf{r}) - N_{\nu} \rho_{\nu}(\mathbf{r}) \right] + \sum_{l=0}^{l_{max}} \kappa'^{3} R_{l}(\kappa' \mathbf{r}) \sum_{m=-l}^{l} P_{lm} y_{lm}(\theta, \varphi) \right\}_{j}$$

CI Deformation density

Isocontour = 0.05 e/Å^3

Anisotropy of the CI charge density And intermolecular interactions As proposed to understand halogen bonds

Total Charge density of TTF-CA in both N and I phases

Direct Estimation of the charge transfer by X ray diffraction

$$\rho_{atom}(\vec{r}) = \rho_{core}(\mathbf{r}) + P_v \kappa^3 \rho_v(\kappa \mathbf{r})$$

$$\rho_{atom}(\vec{r}) = \rho_{core}(\mathbf{r}) + P_{v} \kappa^{3} \rho_{v}(\kappa \mathbf{r}) + \sum_{l=0}^{l_{max}} \kappa^{3} R_{l}(\kappa' r) \sum_{m=-l}^{l} P_{lm} y_{lm}(\theta, \varphi)$$

 $\Box \rangle$

2

Estimated atomic Charge:

$$q_{atom} = N_{atom} - P_{v}$$

OR

Topological Analysis : Integration in atomic basins (Bader)

bological Charges and Volumes

NEWPROP

Souhassou et al. J. Appl. Cryst., 32, 210 (1999)

Topological Charge neutral 0.21 ionic 0.74

Charge representation of the TTF and CA ions

q_{nette}	$=Q_{neutre}$	_	$\int ho(\vec{r}).d\Omega$
		Ω_{ato}	mique

Atom	105K	15K
C1/C8	-0,26	-0,53 / -0,54
C2/C9	-0,36	-0,23 / -0,24
C3/C10	-0,38	-0,29 / -0,29
S4/S11	0,26	0,38 / 0,38
S5/C12	0,37	0,50 / 0,50
H6/C13	0,20	0,31 / 0,31
H7/H14	0,27	0,26 / 0,26
C15/C21	0,71	0,92 / 0,90
C16/C22	-0,02	0,05 / 0,04
C17/C23	-0,01	0,30 / 0,29
O18/O24	-0,74	-1,09 / -1,07
Cl19/Cl25	-0,07	-0,19 / -0,19
Cl20/Cl26	0,02	-0,34 / -0,33

Comparaison between all methods

	RT	90K	40K	15K	Delta Q
Topological Pv-kappa Multipolar	Charges	0.21 0.14 0.06		0.74 0.67 0.65	<u>0.53</u> <u>0.53</u> <u>0.59</u>
DFT	0.48	0.54	0.64	0.63	0.09
VASP LDA		0.54		0.67	0.13
VASP PBE		0.58		0.64	0.06
VASP New hybr	rid functional	0.10		0.80	0.70

Garcia , Dahaoui et Al Faraday discussions 135 , 2007

Nature of the Cl...Cl Interactions ?

iv)-1+x, -1+y, z; v)1/2+x, 1/2-y, 1/2+z; vi)1/2+x, 3/2-y, 1/2+z; vii)x, 1+y, z; viii)-1/2+x, 3/2-y, -1/2+z; ix)-1/2+x, 1/2-y, 1/2+z

Applications a la liaison metal ligand (voir Poster N Lugan)

 $(\eta^{5}-MeC_{5}H_{4})(CO)_{2}Mn^{I}(\eta^{2}-PhC=CPh)$ (1)

Archétype d'un complexe η^2 -alcyne où le métal de transition est dans un bas degré d'oxudation, et où l'alcyne est formellement **donneur à 2 électrons**

Applications a la liaison metal ligand (voir Poster N Lugan)

Complexe du Nb (Z = 41) Présence d'une liaison agostique C-H

 $Tp^{Me^{2}}NbCl(\eta^{1}-\dot{-}C_{3}H_{7})(\eta^{2}-PhC=CMe)$

Complexe η^2 -alcyne où le métal de transition est dans un haut degré d'oxudation, et où l'alcyne est formellement **donneur à 4 électrons** Aucun point critique de liaison n'est mis en évidence pour l'interaction agostique C-H

La topologie de la DDE pour l'alcyne coordonné au métal est celles que l'on peut attendre d'un métala-*cyclopropène*.

Thermally and light induced spin transitions of Fe(btr)2(NCS)2.H2O :first examples of charge density of metastable states

Fe(btr)₂(NCS)₂ Cell parameters variation during the thermal and photo induced transitions

Thermal transition

Varying Temperature and Following a reflection when the HS Is thermal transition occurs

Long range order is kept during the transition Spin like domain formation

S. Pillet , J Hubsch and Lecomte , Eur. Phys. J. B, 2004, 38, 541

Dynamic of the thermal transition

Following the transition versus time at Tc =117.2K

Long range Order and coexistence of LS and HS domains

S. Pillet, J Hubsch and Lecomte, Eur. Phys. J. B, 2004, 38, 541.

Fe(btr)₂(NCS)₂:

Excitation at 10 K

100% LS

~80% HS

Lattice Dynamics during the LIESSTspin conversion

Phvs. Rev. B74 .2006 .140101

Lattice Dynamics during the LIESSTspin conversion

Lattice Dynamics during the LIESSTspin conversion

Evolution of the (0 2 - 4) Bragg reflection

HS domains grow in slightly different orientations; the LS matrix reacts by creating desoriented domains

When the transition is complete (t =600s) the HS domains merge to reconstruct one <u>unique</u> HS lattice

Experimental Charge density of the <u>15K</u> Metastable HS and LS Febtr states

	LS	HS
Space group	C2/c	C2/c
V (Å3)	1790.2(1)	1881.7(2)
Crystal s	size mm 0.32* 0.36*0.18*0.12	0.20*.013
Measured reflections	26316	16975
Unique reflections	6407	3879
Rint (I)	0.034	0.033
Sinθ/λmax (Å-1)	0.98	0.85
R (all data) Mu	<i>IAM refinement</i> 0.039 Itipolar refinement	0.035
R (S < 0.7Å -1 / all data	a) 0.018/0.032	0.022 / 0.032

3D representation of the 3d electron density in the vicinity of the iron atom

Low Spin Fe^{II}

High Spin Fe^{II}

Multipole model allows d ORBITAL POPULATIONS calculation

$$\rho_{d} = \sum_{i=1}^{5} P_{i} d_{i}^{2} + \sum_{i=1}^{5} \sum_{j>i}^{5} P_{ij} d_{i} d_{j} = \sum_{l=0}^{l \max} \kappa'^{3} R_{l} (\kappa' r) \sum_{m=0}^{+l} \sum_{p} P_{lmp} y_{lmp} (\theta, \varphi)$$

Holladay et al., Acta Cryst., A39 (1983) 377

3d atomic orbital populations of iron in LS and HS states. Crystal field hypothesis : pure octahedral symmetry.

	dx²-y²	dz²	d xy	dxz	dyz
Total 3d	-		-		-
LS	0.40	0.20	1.50	2.22	1.94
6.26					
LS crystal field 6	0	0	2	2	2
HS 6.14	0.95	1.49	1.59	0.94	1.17
HS crystal field 6	1	1	1.33	1.33	1.33

Charge density and electrostatic properties of a zeoltithe like material (these E Aubert , JPCS,2004,65,1943)

AlPO₄-15 $(NH_4Al_2(OH)(H_2O)(PO_4)_2H_2O)$

very narrow voids :

Ø = 4,4 Å × 5,3 Å // [001] Ø = 3,5 Å × 4,7 Å // [010]

Then very low adsorption capability (H_2O and O_2 only)

Molecules or ions trapped in the framework during the synthesis:

1 free water molecule:
 1 water bound to Al :
 1 ammonium cation :
 1 OH anion bounded to 3 Al

w11

w10

 NH_4^+

Water – Framework INTERACTIONS

Electrostatic potential at the guest sites

Bertaud, Stewart Method

:combination of direct and reciprocal lattices calculations

Interaction energy calculation of guest molecules

1) POINT CHARGE MODEL, very simple model

	OH anion	NH ₄ +	W (AI)	W11 (guest)
E(Q Topo.)	-0,84	-0,40	-0,29	-0,20
Ε (ρ(r))	-0,97	-1,03	-0,57	-0,46

BUT relaxation (electric, geometric) of the framework not included in the calculation

OUTLINE

Structure factor and electron density analysis Multipole Model, thermal motion analysis and electrostatics

. Applications to Quantum Chemistry :Bonding Phase transitions :TTF CA Metasatable states :Thermal and photoexcited molecules Material Science : Electrostatics in zeolite

Problems with heavy elements and need of SR

Charge density of Y or Gd complexes These N Claiser and JPCS 2004, 65, 1927

Data collection: Y complex

X-ray data collection (Nonius KappaCCD)					
Chemical formula	$YO_2N_{12}C_{32}B_2H_{40}$				
Space group, cell setting	$P2_1/c$, monoclinic				
Temperature (K), Wavelength (Å)	106, 0.71074 Μο(Κα)				
a, b, c (Å) ; β (°)	12.5943(1), 14.8920(1), 19.5690(1); 98.428(1)				
Scan method, Oscillation width (°)	ϕ and ω rotations, 2.0				
Exposure time per degree (s)	150 (low resolution) and 300 (high resolution)				
Crystal to detector distance (mm)	40				
Measured and independent reflections	385562, <mark>36109 (I>0)</mark>				
$(\sin\theta/\lambda)_{\rm max}$ (Å ⁻¹)	1.08				
μ_{RX} (mm ⁻¹), A _{min} , A _{max}	1.6583, 0.698 and 0.805				

Electron density of Y complex

Refinement strategy

for 9633 reflections, $I > 3\sigma_I$

Complete Multipolar model with:

• Harmonic ADPs

- Multipolar expansion up to 4th order on Y (3rd order for other non-hydrogen atoms)
- Constrains on pyrazolyl rings (equivalent)

for a total of 1052 parameters

Final agreement factors

 $R = 1.47 \ \%, R_{\rm w} = 1.47 \ \%, \text{GoF} = 0.42$

Electron density of Y complex

Static deformation electron density

Same planes and contours as before.

Data collection: Gd complex

X-ray data collection (Xcalibur)							
			Crystal 1 Crystal 2				
Crystal shape							
Crys	tal dimensions (mm)		0.15 x 0.15 x 0.18 0.14 x 0.			0.14 x 0.14 x 0.2	20
Cry	ystal volume (mm ³)		$3.953 \ 10^{-3} \qquad \qquad 3.828 \ 10^{-3}$				
Tempera	ture (K), Wavelength	(Å)	106, 0.71074 Mo(Kα)				
Ind	ep. reflections (I>0)		49511				
Complete	eness (%), <redundan< td=""><td>icy></td><td colspan="4">95.2 ,5.3</td></redundan<>	icy>	95.2 ,5.3				
	$(\sin\theta/\lambda)_{\rm max}$ (Å ⁻¹)		1.20				
Scale factor between crystals			0.9868(7)				
	Absorption	μ_{RX} (mm ⁻¹	$\left R_1 (\%) \right $	$R_{2}(\%)$	$R_{w}(\%)$	GoF	
	Without correction	/	6.13	3.75	6.03	0.581	
	With correction	1.88	5.94	3.61	5.82	0.580	

Gadolinium Complex

Experimental resolution limit

Trying Electron density modeling of the Gd complex

Preliminary refinement using the Gd form factor from Koga *et al*..

16931 reflections, $I > 3\sigma_I$

Results of the preliminary refinement

Residual electron density maps, $I > 3 \sigma$

Left: Gd-O₁-O₂ plane (form factor from Koga *et al.*), right: Y-O₁-O₂ plane. Contours of 0.2 eÅ⁻³, estimated error : 1 contour.

Available form factors

http://www.iucr.org/

http://www.unb.ca/fredericton/science/ chem/ajit/download.htm

http://harker.chem.buffalo.edu/group/ptable.html

Do we have an accurate form factor for Gd?

Definition of tested models

	Model	Core definition	Population	Valence definition	Population			
1	Gd ³⁺ International Tables		Cation of 61 e					
2	Gd ⁰ International Tables		Neutral atom of 64 e					
3	International Tables / Coppens <i>et al</i> .	Gd ³⁺ Inter. Tables	61 e	3 e $5d^3$				
4	International Tables / Koga <i>et al</i> .	Gd ³⁺ Inter. Tables	61 e	5d orbital calculated by Koga <i>et al</i> .	3 e $5d^3$			
5	Coppens et al.	Xe type core 6s orbital included	56 e	5d and 4f orbitals	$\frac{8 \text{ e}}{5 \text{d}^1, 4 \text{f}^7}$			
6	Koga <i>et al</i> .	Xe type core	54 e	6s, 5d and 4f orbitals	$ \begin{array}{r} 10 e \\ 6s^2, 5d^1, 4f^7 \end{array} $			

Results for different form factor models

Model	Source	R (%)	<i>R</i> _w (%)	Scale factor variation / model 2	U _{iso} Gd
1	Internationals Tables (Gd ³⁺)	3.68	3.22	0.00 %	0.0153
2	Internationals Tables (Gd ⁰)	3.70	3.19	/	0.0154
3	Internat. Tables / Coppens et al.	3.44	3.09	-2.69 %	0.0150
4	Internat. Tables / Koga <i>et al</i> .	3.60	3.04	-0.13 %	0.0153
5	Coppens et al.	4.13	3.61	-2.39 %	0.0156
6	Koga <i>et al</i> .	3.73	3.24	+0.09 %	0.0151

Best multipolar refinement (model 4)

Static deformation electron density

Static deformation electron density maps. Contours of 0.05 eÅ⁻³.

Conclusions and perspectives

- Increase the maximum resolution and accuracy of the data collection with synchrotron

- use of higher order multipoles

- Need of Accurate theoretical wave functions of rare earth and heavy elements which should be tested using SR data

- CAUTION in electron density refinement on heavy atoms which means that even with synchrotron radiation it is still frontier research.

More for SR diffraction...

- Ultra high resolution protein crystallography see B Guillot's talk
- Minerals
- Unstable crystals
- Metastable states
- Phase transitions and accurate thermal parameters
- Microcrystals
- Minerals