

Institut de Chimie de la matière Condensée de Bordeaux ICMCB - UPR CNRS 9048

Université Bordeaux I

Comprendre et optimiser les Matériaux Moléculaires à Transition de Spin: le rôle déterminant de l'analyse par diffraction X sur monocristal

Philippe Guionneau - MdC, HDR guio@icmcb-bordeaux.cnrs.fr Soleil-LLB - Mars 2007

Les complexes à TS: des matériaux bistables piézo-, photo- et thermosensibles

Transition de Spin: modification de la configuration électronique due à la proximité des valeurs du champ cristallin et de l'énergie d'appariement des e⁻

· ·	· · · · ·	
Applications potentielles	Propriétés	Points forts spécifiques
Interrupteur électronique	bistabilité magnétique	photo-conversion
Stockage d 'information	hystérèse magnétique	échelle moléculaire
Pigments	bistabilité chromatique	réversibilité
Capteurs, afficheurs	hystérèse chromatique	largeur d'hystérèse
Moteur moléculaire	variation volumique	non fatigabilité

Les complexes à TS: des matériaux bistables piézo-, photo- et thermosensibles

Points faibles:

-pas de création raisonnée de matériaux aux propriétés adéquates (températures , hysteresis ...)

-durée de vie courte des états photo-induits à température ambiante

-faible vivier (peu de couleurs ...)

Pré-requis: savoir obtenir des caractéristiques de TS adéquates

Evidence de l'importance des propriétés structurales

Modifications structurales dues à la TS

La variation des mailles cristallines conditionne la **modification volumique macroscopique**:

-amplitude variable de 1,5 à 5 %

-indépendante de la contrainte exercée

-fortement anisotrope -10 à +10%

-infatigable

Acta Cryst., <u>B61</u>, 25-28 (2005), Phys. Rev. B, 72, 214408 (2005)

La pente reflète la coopérativité, i.e. les interactions intermoléculaires

La raideur de pente est directement reliée à la force d'une interaction intermoléculaire identifiée !

Contrôle de la pente par la topologie des interactions intermoléculaires

Acta Cryst. B,59:479(2003)

Plus la distorsion augmente plus T_{1/2} diminue

Acta Cryst. B, 61:25 (2005)

plus la distorsion est grande plus T(LIESST) est élevée

Acta Cryst. B, 61:25 (2005)

[Fe(L₂₂₂(N₃O₂))(CN)₂].H₂0:

Notre intérêt initial:

- -denticité élevée (distorsion potentielle)
- -report préliminaire d'un T(LIESST) élevé
- -hypothèse d'un changement de coordination

mais:

- pas de diagramme complet des propriétés magnétiques et photo-magnétiques
- pas de preuve expérimentale du changement de coordinence

Nelson et al., J. Chem. SoC. Dalton Trans. , 1986, 991-995 Hayami et al., Inorg Chem. , 2001, 40, 3240

- T(LIESST) le plus élevé connu pour des complexes de fer(II) mononucléaires
- 7 phases distinctes, 2 modes photomagnetique différents
- Synergie entre température, temps, lumière et transition structurale

• DFT : le changement de coordinence est fort probable Bonhommeau et al. Angew. Chem. Int. Ed., 2006, 16250

J. Phys: Conf Series, 21:23 (2005), Inorg. Chem. in press

Phase	Α	В	С
Т(К)	300	120	120
Gr. d'espace	C2/c	P2 ₁ /c	C2/c
a (Å)	17.326(5)	10.624(5)	16.942(5)
b (Å)	12.054(5)	11.916(5)	11.411(5)
c (Å)	10.125(5)	14.676(5)	20.647(5)
b (°)	116.27(1)	105.08(2)	113.88(4)
V (ų)	1896.2(0)	1793.9(1)	3649.7(8)
R(%)	3.0	4.9	6.0
Indep. Fe site	1/2	1	1
Etat de spin	HS	BS	<u>;</u> ;
Fe Coordination	7	6	6/7

données XRD

Acta Cryst. C60, 587-589 (2005) and Phys Rev B submitted

Un changement de coordination associé à une TS

Une rupture réversible à l'état solide d'une liaison métal-ligand !

d'un fer(II) hepta- à un fer(II) hexa-coordinné

Т

B

Haut Spin, $FeN_3C_2O_2$: HS-7 <Fe-N>= 2.171(3) Å <Fe-C>= 2.163(3) Å Fe-O_1= 2.334(2) Å Fe-O_2= 2.334(2) Å

Bas Spin, $FeN_3C_2O_1$: LS-6 <Fe-N>= 1.935(3) Å <Fe-C>= 1.949(3) Å Fe-O_1= 2.240(2) Å Fe...O_2= 3.200(2) Å

	Α	В
d _(OH) (Å)	4.402(2)	2.356(1)
d _(OH-C) (Å)	5.014(1)	3.224(2)
ngle O-H-C (°)	138.07(1)	150.27(3)

- confirmation qu'une forte distosion conduit à des T(LIESST) élevés
- caractérisation d'une rupture réversible de liaison associée à une TS
- investigations RX en cours sur le mécanisme, les autres phases et notamment les phases photo-induites

Collaboration avec Claude Lecomte, Sébastien Pillet - Nancy - France

doublement des pics de Bragg durant la TS

mais diffraction faible, cristaux petits: besoin de sources intenses

PhD F. Le Gac et C. Balde, en cours

Synthèse et étude magnétique: Patrick Rosa, Dalila Fedaoui

Soumis à Eur. J. Inorg. Chem.

Т(К)	I- 293	II- 140	III- 100
a(Å)	15.683(1)	30.958(1)	30.964(1)
b(Å)	8.1599(1)	16.109(1)	15.927(1)
c(Å)	18.596(1)	19.613(1)	18.342(1)
b(°)	110.14(1)	117.50(1)	110.5(1)
V(Å ³)	2234.3(1)	8676.1(4)	8472.4(1)
Space Group	P 2 ₁ /n	Cc	Сс
R(%)	3.4	3.6	5.3
Indep. binucléaire	$\frac{1}{2}$	2	2
Indep sites Fe	1	4	4

	Binucléaire 1		Binucléaire 2	
	<fe1-n>(Å)</fe1-n>	<fe2-n>(Å)</fe2-n>	<fe3-n>(Å)</fe3-n>	<fe4-n>(Å)</fe4-n>
300 K , phase I	2.170	2.170	2.170	2.170
	НЅ	— HS	НЅ	— HS
140 K, phase II	2.165	2.160	2.168	2.157
	НЅ ———	— HS	НЅ ———	— HS

Phase I à II correspond à un ré-arrangement structural uniquement

Le principal changement structural intramoléculaire concerne la torsion de la bipy:

Phase I	Phase II	Phase III
0.8	18.4	18.4

cela correspond aussi à un changement significatif du réseau de solvant et des interactions inter-moléculaires.

Par ailleurs, le complexe analogue où bipy est remplacé par dpe , [Fe₂(NCS)₄(bpp)₂dpe], ne présente pas de TS

	Binuclèaire 1		Binuclèaire 2	
	<fe1-n>(Å)</fe1-n>	<fe2-n>(Å)</fe2-n>	<fe3-n>(Å)</fe3-n>	<fe4-n> (Å)</fe4-n>
300 K , phase I	2.170	2.170	2.170	2.170
	НЅ	— HS	HS	— HS
140 K, phase II	2.165	2.160	2.168	2.157
	НЅ ———	— HS	HS	— HS
100 K, phase III	1.998	2.152	2.163	1.987
	BS	— HS	HS	— BS

Phase II à III correspond à la TS, les sites HS et BS sont ordonnés

Ce réseau particulier est-il responsible de la TS partielle?

investigations du mécanisme, de la surstructure (2a 2b 2c ??), des états photinduits: besoin de faisceau brillant

Challenges actuels de la diffraction sur monocristal pour la TS

Caractérisation de nouveaux systèmes, probablement plus compliqués: -polynucleaires -autres ions

-denticité élevée

Explorer le mécanisme de TS -spin-like domains -multi-metastabilité -relations structure-propriétés -structures magnétiques

Explorer de nouvelles frontières:

- -études fines, densité électronique
- -études résolues en temps
- -haute pression

Grands instruments:

- surstructure diffraction faible
 - états métastables
 - densités électroniques
 - haute pression
 - études dynamiques
 - structures magnétiques

. . .

Collaborateurs et co-auteurs de ce travail:

Bordeaux:

Abdellah KAIBA - post-doc Frédéric Le Gac, PhD Dr Mathieu Marchivie (PhD 2003) Dr José Sanchez (PhD 2005) Dr Dalila Fedaoui Dr Jean François Létard Dr Patrick Rosa Prof. Daniel Chasseau Alain Largeteau Nancy (F) C. Lecomte S. Pillet Rennes (F) E. Collet H. Cailleau ILL MH Lémée-Cailleau V. Legrand Durham (UK) J.A.K. Howard A.E. Goeta D.S. Yufit