

B. Gillon, A. Cousson, F.Varret and G M^c Intyre

Dans les complexes moléculaires à transition de spin Fe^{II}, la conversion optique a lieu à basse température

Diffraction neutron dans l'état magnétique photo-induit de $[Fe^{II}(ptz)_6](BF_4)_2$:

Détermination à 2K de la structure et la densité d'aimantation

L.Wiehl et al., Appl.Cryst 33(2000)201

transition de phase structurale à 130 K

 $R\bar{3} \rightarrow P\bar{1}$

trempe de phase R3 Par refroidissement rapide dans l'azote

B Commutation optique de systèmes à transition de spin: effet LIESST

Light Induced Excited Spin State Trapping (LIESST)

Processus basse température

 $\lambda \sim 514 \text{ nm}$ direct

 $\lambda \sim 820 \text{ nm}$ indirect

S. Decurtins et al, Inorg. Chem. 24 (1985) 2174 P. Gütlich et al, Angew. Chem. Engl Ed. 33 (1994) 2024; A. Hauser, Comm.Inorg. Chem 17 (1995) 17

Etirement ~ 0.20 Å (Fe^{II}) de la distance metal-ligand au cours de la conversion de BS-HS

Dispositif expérimental pour la photo-excitation in-situ (LLB)

A. Goujon et al, Phys. Rev. B 73 104413 (2006)

Photo-conversion complète du monocristal

Changements stucturaux importants

(0 2 8)

collecte: 6 images pour chaque état électronique (rotation du cristal autour de son axe vertical)

Etat fondamental **BS**

a = b = 10.70 Å c = 31.92 Å

3317 raies mesurées 769 raies uniques 358 utiles (F > 1.5σ) 74 paramètres R = 12.8%

GOF = 1.09

Etat photo-excité HS-LIESST

a = b = 10.88 Å c = 31.58 Å

3083 raies mesurées 719 raies uniques 383 utiles (F > 1.5σ) 74 paramètres R = 9.9%

GOF = 1.11

Fe^{II}BS

d_{Fe-N}=1.97Å d_{Fe-N}=2.18Å

Etirement de la distance Fe-N

Diffractomètre à neutrons polarisés 5C1

Porte-échantillon optimisé pour la photo-excitation

Sphère d'intégration

photo-excitation homogène+ pas de pertes de flux lumineux

Photo-excitation de $[Fe(ptz)_6](BF_4)_2$

Photo-excitation complète

A. Goujon et al, Phys. Rev. B 67 220401(R) (2003)

B Carte de densité de spin de l'état photo-induit à 2K

projection suivant l'axe c

Modèle d'affinement sphérique $N_{ref} = 31 (F_M > 2\sigma)$ $R_w = 12.5\%$ GOF = 2.47

Valeur de l'aimantation (SQUID): à T = 2K, H = 5T (H // \vec{c}) 3.8(1) μ_B

→ 100% photoexcitation

A. Goujon et al, Phys. Rev. B 67 220401(R) (2003)

Pas de domaines de spin (LSD)

2 processus possible:

Pas de formation de domaines HS

L. Guérin, thèse de doctorat, Rennes, 2005

Etirement de la distance Fe-N

Croissance de domaines de spins (LSD)

Legrand, thèse de doctorat, Nancy, 2005

Photo-excitation à 15K

 λ =488 nm, P=92 mW.

Transition LIESST

Croissance de domaines de spins (LSD)

Equation maîtresse = équation d'évolution d'un système dynamique, écrite en terme de **taux de transition**

 $dn/dt = [1-n(t)][k_{LH}^{opt} + k_{LH}^{therm}(T,n)] - n(t)[k_{HL}^{opt} + k_{HL}^{therm}(T,n)]$

= Population × Taux - Population × Taux (BS) disponible croissants (HS) disponible décroissants

n(t) population d'états excités (usuellement HS) $k_{LH}^{opt} = \eta_{LH} I_{LH} \sigma_{LH}$ taux de photo-excitation croissante $k_{HL}^{opt} = \eta_{HL} I_{HL} \sigma_{HL}$ taux de photo-excitation décroissante $k_{LH}^{therm} k_{LH}^{therm}$ taux de relaxation f(T,n)

Equation maîtresse = équation d'évolution d'un système dynamique, écrite en terme de **taux de transition**

 $dn/dt = [1-n(t)][k_{LH}^{opt} + k_{LH}^{therm}(T,n)] - n(t)[k_{HL}^{opt} + k_{HL}^{therm}(T,n)]$

= Population × Taux - Population × Taux (BS) disponible croissants (HS) disponible décroissants

╋

Potentiel dynamique = direction et vitesse de l'évolution hors équilibre

$$dn \, / \, dt = -dU \, / \, dn$$

Les structures nucléaires de l'état fondamental et photoinduit (LIESST) à 2 K de Fe(ptz)₆](BF₄)₂ ont été déterminées

Principalement une expansion du noyau Fe-N₆ La distance Fe-N a augmenté de 0.21 Å et le volume de la maille élémentaire de 2%

Pour la première fois dans les composés à transition de spin, un caractère progressif du processus de photoexcitation a été mis en évidence.

Un modèle pour déterminer les conditions d'autoorganisation a été développé et les vérifications expérimentales sont en cours

Collaborations

Gary McIntyre

Jelena Jeftic ENSCR

Epiphane Codjovi Kamel Boukheddaden

Gemac – ex LMOV

C. Hubert

société ERROL

