Transitions de phase à l'équilibre thermodynamique et commutations photoinduites ultrarapides hors-équilibre: apports de la diffraction de neutron, du rayonnement synchrotron et de la diffraction X ultra-rapide.

Eric Collet,

GMCM, UMR-CNRS 6626

Institut de Physique de Rennes, Université de Rennes 1- CNRS, France

FFETS COOPERATIFS PILOTANT LE PHOTO-SWITCH MACROSCOPIQUE

Implique différentes échelles: temps/espace

Tirer avantage des effets coopératifs entre molécules à l'état solide pour générer des effets hautement efficaces

MPORTANCE DES EFFETS COOPERATIFS

La réponse du système à une excitation dépend des effets coopératifs

Pour les systèmes coopératifs le solide joue le rôle de milieu actif

Etudes structurales de la Transition de spin sous irradiation continue

Dans certains matériaux moléculaires, les effets coopératifs peuvent stabiliser l'état photoinduit

LIESST Effect : Light Induced Excited Spin State Trapping

Gütlich et al., Angew. Chem. 33, 2024 (1994).

- Nature de la phase photoinduits HS de [Fe(pic)₃]Cl₂EtOH
- Et [Fe(PM-BiA)₂(NCS)₂] similaire à celle à l'équilibre thermique

lécanisme pilotant la commutation macroscopique

La transition photoinduite se fait pa nucléation de domaine:

Coexistence des pics de Bragg des phases HS et LS

Huby N. et al. Phys. Rev. B 69, 020101(R) (2004)

Ichiyanagi K. et al. Phys. Rev. B 73, 060408(R) (2006)

lecanisme pilotant la commutation macroscopique

La transition photoinduite se fait par

nucléation de domaine:

Coexistence des pics de Bragg

des nhases HS et LS

Effet non-linéaire: hystéresis sous excitation lase

LIOH (light-induced Optical hysteresis)

Introduit par A. Desaix et al, Eur. Phys. J B6 (1998) Observé dans [Fe_xCo_{1-x}(btz)_x(NCS)2]

Ichiyanagi K. et al. Phys. Rev. B 73, 060408(R) (2006)

Système bi-nucléaire à 3 états: LIESST photo-sélectif et réversible

TRANSITION NEUTRE-IONIQUE: COMPLEXES A TRANSFERT DE CHARGE

Le matériau peut commuter de l'état N à I sous l'effet de T°, P, Laser, ...

Différents composés :

- TTF-CA
- DMTTF-CA

- (BEDT-TTF)-(CIMeTCNQ)

TTF tetrathiafulvalene CA chloranil DMTTF

D'EXCITON-STRINGS

ISE EN EVIDENCE DIRECT D'EXCLIATION DE TRANSFERT DE CHARGE ID

Eeffets coopératifs : E(n) < n E(1

lise en évidence directe par diffusion diffuse

ictuation △F du facteur de structure: corrélation 1D

Europhysics Letters 57(1) 67 (2002) / Highlights ESRF (2000)

Between (3 1 – 1) and (3 1 0)

Around (3 1 –1)

E. Collet et al, Highlights ESRF (2002) M. Buron et al. Phys. Rev. Lett. (2006)

ES FLUC MISE EN OKDRE 3D

(♥) ₽ ₩ 0.10 – 1/c ξ_{q1D}^{-1} $\xi_{\text{d1D}}^{\text{-1}}$ 0.05 , eesel 0.00 $^{T/I}_{M}$ (arb. units) -1 5 $\chi_{_{d1D}}$ 0 150 200 50 1000 T (K) T_{cross} T_c T_{1D}

→1D

– 1/b

3D←

H-scan

K-scan

▲ L-scan

0.20

E. Collet et al, **Europhysics Letters 57(1) 67 (2002)**

DANS DES COMPLEXES A TRANSFERT DE CHARGE

S. Koshihara et al, J. Phys. Chem. B103, 2592 (1999)

Iwai, Okamoto et al, PRL(2002)

effets coopératifs importants : quelques 100 molecules transformées / photon

- ▷ très rapide: quelques 100 ps
- ▷ fortement non-linéaire: effet de seuil

intraction X ultra-rapide: information a Lechelle atomique

Sources R-X :

synchrotron ESRF, KEK
> 50-150 ps

+ slicing Berkeley, SLS -> 50-150 fs

- Lasers plasmas LOA...
 - -> 100 fs

-X-FEL Stanford, Hamburg, Spring

-> 100 fs

Watching matter rearrange '

M. Wulff, S. Adachi)

100 ps

ransition neutre-ionique photoinduite: réorganisation structurale

Collet et al Science 300 612 (2003)

ransition de 1 a N: effets thermique / effets photoinduits

I Guérin et al Chem Phys 299/2-3 163 (2004)

volution temporelle de la diffusion diffuse

Détection de la photo-génération d'exciton-strings par diffusion diffuse Mesurée en (3 1 -0.8)

Raie de Bragg Diffusion diffuse 1.10 Intensity at maximum (arb. unit) ntegrated intensity 490 (067)1.00 480 0.90 470 0.80 460 -10001000 2000 450 440 430 420 -1000 -500 0 500 1000 1500 2000 dt (ps)

Mécanisme: combinaison des résultats le diffraction et diffusion diffuse: ESRF et KEK

Formation d'exciton-strings puis couplage entre chaîne et mise en ordre 3D

ouvelles opportunités avec les sources X femtosecondes

- Laser plasma LOA: coupling a 4 circles diffractometer to a 100 fs X-ray source

> Rousse et al, Nature (2001) Sokolowski et al, Nature (2003)

> > Cavalleri et al, Science (2007)

- X-ray Free Electron Lasers California, Germany, Japan

- sources synchrotron: application aux matériaux moléculaires generation of 500 fs X-ray pulses using CRAB cavities

Cavalleri et al, Nature (2006) Chergui et al (préliminaire)

quipe et collaborations

<u>GMCM University of Rennes 1</u>	Marylise Buron Hervé Cailleau Maciej Lorenc		David Glijer Johan Hebert Nicolas Moisar Elzbieta Trzop	
ILL : Marie-Hélène Lemée-Cail	leau			
TITech/ KEK Japan Shin-ya Koshihara	Soleil	ESRF, Michael Wulff		LLB Earmanda Maugaa
Shin-ichi Adachi	Erik Elkaim	J. Francois Béra	r BM2	rernance moussa
Laurent Guérin				
ICMCB Bordeaux	LCC	CNRS Toulouse		REININES
Jean-François Létard	Azze	dine Bousseksou		
Philippe Guionneau	Gabo	or Molnar		
ERATO AN	CENTRE NAT DE LA RECHE SCIENTIFIQU	IONAL ERCHE E		
Région Région RACI leupe chercheur		MAGMANet	FLASH Understandin	ng fast