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Overview

• Why high magnetic fields?

• How to generate magnetic fields?

• Pulsed magnetic fields

• Application to X-ray diffraction

• Example: Jahn-Teller transition of TbVO4

• Outlook: Future developments
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Why high magnetic fields?

• The magnetic field is a thermodynamic variable of fundamental importance,
as temperature or pressure.

• All electrons carry a spin, and therefore a magnetic moment.
Therefore, in principle, all condensed matter is concerned:

Magnetically ordered systems (changes of magnetic structure),
Polymers (orientation),
Semiconductors (quantum Hall effect),
Superconductors (flux line lattices, destruction of superconductivity)
. . . and many others

• The higher the available field,
the larger the number of phase transitions and other effects
that can be observed.
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How do you generate a magnetic field?

• Up to 1 T: Permanent magnets.
• Up to 15 T: Superconducting magnets → ID20, 10 T.
• Up to 33 T: Resistive magnets, 20 MW.
• Up to 45 T: Hybrid superconducting and resistive magnets,

(NHMFL, Tallahassee, 24 MW, ≈ 15 M$).
→• Up to (existing) 80 T: Pulsed resistive magnets,←

(project) 100 T:
• Up to ≈ 130 T: Destructive pulsed magnets (destroys magnet only).

Up to ≈ 600 T: Destructive pulsed magnets (destroys everything).
• above that: Neutron stars, solar storms, . . .

Current maximum field for x-ray or neutron diffraction: 15 T (17.5 T with
“booster”)
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Motivation/Scientific case

• There are many laboratories in Europe and elsewhere in the world which are
dedicated to high magnetic field research.

• These labs employ a large number of different techniques:

→ Magnetization and susceptibility.

→ Transport (resistivity, Hall effect, magneto-resistance).

→ Specific heat.

→ Dilatometry and sound velocity.

→ De-Haas-van-Alphen effect (Fermi surface mapping)

→ NMR (Nuclear magnetic resonance)

→ Optical spectroscopy (Raman scattering, reflectivity, ellipsometry, . . . )
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Motivation/Scientific case

• All of the current techniques are macroscopic
measurements.

. . . but there is no information about the microscopic
structure of the sample at fields above 15 T!

• At the same time we know (from measurements at
lower fields) that often field-induced phase transitions
have a structural component.

• Sound velocity and dilatometry measurements at high
fields also indicate structural effects.

There is an urgent need for diffraction for fields above 15 T!
→ Find the easiest and most cost-effective way

to explore this region of the phase diagram. . .
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How do you generate a magnetic field?

• Up to 1 T: Permanent magnets.
• Up to 15 T: Superconducting magnets → ID20, 10 T.
• Up to 33 T: Resistive magnets, 20 MW.
• Up to 45 T: Hybrid superconducting and resistive magnets,

(NHMFL, Tallahassee, 24 MW, ≈ 15 M$).
→• Up to (existing) 80 T: Pulsed resistive magnets,←

(project) 100 T:
• Up to ≈ 130 T: Destructive pulsed magnets (destroys magnet only).

Up to ≈ 600 T: Destructive pulsed magnets (destroys everything).
• above that: Neutron stars, solar storms, . . .

Installations become progressively bigger, more expensive, and more difficult to
manage, with exception of pulsed fields, which are scalable.
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How to generate pulsed magnetic fields?

The principle is very simple:

C L
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. . . but some details need to be considered:

• High voltage/high current risks: 24 kV, 6 kA

→ Grounding, protection of beamline electronics . . .

• Stored energy:110 kJ (upgrade to 1.5 MJ planned)

→ transformed into heat at the end of the pulse . . .

→ . . . need efficient cooling of the coil

→ What happens in case of a fault?

High field laboratories know very well how to handle this.
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Application to x-ray diffraction

• Magnet and capacitor bank supplied by LNCMP/Toulouse

→ Transportable capacitor bank, 130 kJ energy, 2.8 tons, ≈ 4 m3.

→ Solenoid magnet, lq. N2 cooled, maximum field 30 T,
bore 22 mm, max. opening angle 22◦.

→ rise time 5 msec, decay time ≈ 20 msec, 10 shots per hour.

• X-ray powder diffraction at 21 keV

→ Online-image plate detector

→ Fast shutter to synchronize the x-ray exposure
to the magnetic field pulse.

30 T limit convenient because of wire material → duty cycle, fatigue, . . .
→ upgrade to 60 T relatively straightforward
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X-ray powder diffraction on BM26B DUBBLE

Transportable generator:

• 2 storage modules,
1 charger/control module

• C = 1 mF, Vmax = 16 kV, Emax = 130 kJ

• Total weight ≈ 2.8 t

• Total size (h× d× w)
1.25× 1.30× 2.85 m3

• Generator and load magnet installed in
radiation hutch.

• Interlocked through radiation hutch PSS.

• Remote control over fiber optical cables.

Generator design: P. Frings (LNCMP).
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X-ray powder diffraction on BM26B DUBBLE

Coil design: J. Billette (LNCMP), cryostat design: M. Nardone, A. Zitouni (LNCMP).
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X-ray powder diffraction on BM26B DUBBLE

• Shutter synchronized
to magnetic field pulse

• Warming of coil after
sequence of pulses.

• Signal integrated over
≈ 5 ms per pulse.

Not ultra-fast, but not stroboscopic: Small number of pulses.
Fatigue life: Design system such that 1 shot is enough.
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Example: Jahn-Teller transition in TbVO4

• TbVO4 is a textbook example of a cooperative Jahn-Teller transition mediated
by quadrupolar interactions. TJT ≈ 34 K.

• The system is known since the 1970’ies and has been studied intensively at zero
field. G. A. Gehring and K. A. Gehring, Rep. Prog. Phys. 38, 1 (1975).

• Driven by Tb 4f

quadrupole moment

• Orthorhombic
distortion,
2% along (111)

• Space group
I41/amd → Fddd
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Example: Jahn-Teller transition in TbVO4

• Recently, first studies in high magnetic fields.

• Strongly anisotropic response (CF).

• Theory (qualitative): 1970’ies
Competition of magnetization and quadrupolar moment

• Theory (quantitative):
Field of ≈ 28 T along the c-axis
suppresses the JT state.

A. A. Demidov et al, Physica B 363, 245 (2005).

• Indirectly observed in magnetization.
Kazei et al, JETP Lett. 82, 609 (2005).

• But so far no direct observation
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Jahn-Teller transition in TbVO4:
Raw data

• DUBBLE CRG at ESRF

• 21 keV

• MAR 345 image plate detector

• Exposure time 60 s

• B = 0 T, T = 7.5 K

• Sample:
Ground single crystals
embedded in a polymer matrix
to suppress grain movement
and improve thermal contact.
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Jahn-Teller transition in TbVO4:
Raw data

• DUBBLE CRG at ESRF

• 21 keV

• MAR 345 image plate detector

• Exposure time 15× 5 ms

• B = 30 T, T = 7.5 K

• Sample:
Ground single crystals
embedded in a polymer matrix
to suppress grain movement
and improve thermal contact.
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Jahn-Teller transition in TbVO4: 2θ scans

• High temperature: small splitting induced by magnetic field.

• Low temperature: Splitting reduced by magnetic field.

→ Complex average over phase diagram because of powder average
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Interpretation (qualitative)
• The system is driven by the Tb 4f quadrupole moment

ε ∝ Qxy =
1

2
(JxJy + JyJx)

Very strong L-S coupling in rare earths
links magnetic moment and charge distribution.

• Coupling between quadrupole and magnetic dipole induced by magnetic field.

→ B ‖ (001): Magnetization ∝ Jz in competition with Qxy.

→ B ‖ (110): Magnetization ∝ (Jx + Jy) increases Qxy.

• In a powder sample: Average over all possible directions

→ Average over different phase diagrams

• Working on quantitative data analysis with Z. A. Kazĕı.
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Toulouse 30T magnet system: Second generation

• New coil design for increased optical access
(J. Billette, LNCMP)

→ Coil wound onto a double-cone

→ opening angle up to 31◦

→ more powder lines available for measurement

• Installation on undulator beamline ID20

→ ≈ ×50 gain in intensity

→ Generator installed outside the radiation hutch

• First tests on the beamline 08–14/11/2006

→ Sufficient intensity with 2–4 msec exposure time

→ Need only one shot per spectrum
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Toulouse 30T magnet system: Second generation
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Miniature pulsed magnetic field coils
(Peter van der Linden, Olivier Mathon)

Successfully tested in X-ray magnetic circular
dichroism (XMCD) experiments on ID24

• Very compact system, can be installed on any beamline.

• Rise time 250 µs, one pulse every 10 sec.
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Nuclear resonant forward scattering using pulsed magnetic

fields
(Cornelius Strohm, Peter van der Linden, Rudolf Rüffer)

• Nuclear Resonant Forward Scattering of 57Fe foil

• Using mini-coil system

• Total data acquisition time ≈ 8 h
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Future developments

Short term:

→ The technical solution we are using now has a lot of potential.

→ Significant improvements are necessary before this can become
a standard experiment with a user program.

→ For most experiments a split coil geometry with ~B ⊥ ~k is desired.

→ Try other x-ray techniques: Spectroscopy (EXAFS, XMCD), Laue diffraction
can be done by installing our equipment on different beamline.

Medium/long term:

→ Need to improve the detection efficiency. Fast 2D pixel detector?

→ Very low temperatures, down to 100 mK.

→ Higher field, up to 60 T. Improved duty cycle of the magnet system.

→ A permanent setup for capacitor banks, optimized detection system, etc.
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Summary/Conclusions

• X-ray diffraction under high magnetic fields is virtually virgin ground.
There is plenty to be done.

• Steady magnetic fields have the advantage that we can use
proven measurement strategies, measure very small signals, etc.

• Pulsed magnetic fields require much more development of x-ray diffraction.

• But because of sample volume, time structure, etc, they can boldly go where
no neutron has gone before (and very likely will ever go?).

→ There is a scientific case for both of them.

→ Steady fields solution is lower risk, but limited to 30–40 T.

→ Pulsed fields solution is much more speculative. But it also requires less capital
investment, and the ms time resolved x-ray techniques may be of interest in
other fields, such as on-line chemistry, shock waves, . . . .

? . . . with the possible exception of neutron stars!


