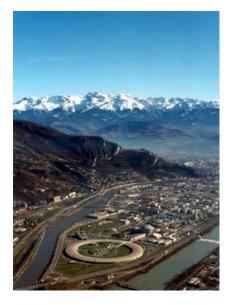
X-ray powder diffraction

under pulsed magnetic fields up to 30T


C. Detlefs¹, J. Vanacken², P. Frings³, F. Duc³, M. Nardone³, J. Billette³, A. Zitouni³, G. Rikken³, J. E. Lorenzo⁴, W. Bras⁵

¹ European Synchrotron Radiation Facility, Grenoble.
 ² Pulsveldengroep, Institute for Nanoscale Physics and Chemistry, Leuven.
 ³ Laboratoire National des Champs Magnetiques Pulsés, CNRS, Toulouse.
 ⁴ Laboratoire de Crystallographie, CNRS, Grenoble.
 ⁵ DUBBLE CRG at the ESRF, Grenoble.

P. Frings et al., Rev. Sci. Instr. **77**, 063903 (2006). Theory: Z. A. Kazeĭ, Moscow State University.

Overview

- Why high magnetic fields?
- How to generate magnetic fields?
- Pulsed magnetic fields
- Application to X-ray diffraction
- Example: Jahn-Teller transition of TbVO₄
- Outlook: Future developments

Why high magnetic fields?

- The magnetic field is a thermodynamic variable of fundamental importance, as temperature or pressure.
- All electrons carry a spin, and therefore a magnetic moment. Therefore, in principle, all condensed matter is concerned:

Magnetically ordered systems (changes of magnetic structure),

Polymers (orientation),

Semiconductors (quantum Hall effect),

Superconductors (flux line lattices, destruction of superconductivity)

... and many others

• The higher the available field, the larger the number of phase transitions and other effects that can be observed.

How do you generate a magnetic field?

• Up to 1 T: Permanent magnets. 15 T: Superconducting magnets \rightarrow ID20, 10 T. • Up to **33** T: Resistive magnets, 20 MW. • Up to 45 T: Hybrid superconducting and resistive magnets, • Up to (NHMFL, Tallahassee, 24 MW, $\approx 15 \text{ M}$ \$). $\rightarrow \bullet$ Up to (existing) 80 T: Pulsed resistive magnets, \leftarrow (project) 100 T: • Up to \approx 130 T: Destructive pulsed magnets (destroys magnet only). \approx 600 T: Destructive pulsed magnets (destroys everything). Up to above that: Neutron stars, solar storms, ...

Current maximum field for x-ray or neutron diffraction: $15\,\mathrm{T}$ (17.5 T with "booster")

Motivation/Scientific case

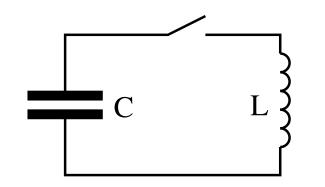
- There are many laboratories in Europe and elsewhere in the world which are dedicated to high magnetic field research.
- These labs employ a large number of different techniques:
- \rightarrow Magnetization and susceptibility.
- \rightarrow Transport (resistivity, Hall effect, magneto-resistance).
- \rightarrow Specific heat.
- \rightarrow Dilatometry and sound velocity.
- → De-Haas-van-Alphen effect (Fermi surface mapping)
- \rightarrow NMR (Nuclear magnetic resonance)
- \rightarrow Optical spectroscopy (Raman scattering, reflectivity, ellipsometry, . . .)

Motivation/Scientific case

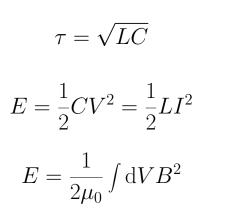
- All of the current techniques are macroscopic measurements.
- ... but there is no information about the microscopic structure of the sample at fields above 15 T!
 - At the same time we know (from measurements at lower fields) that often field-induced phase transitions have a structural component.
 - Sound velocity and dilatometry measurements at high fields also indicate structural effects.

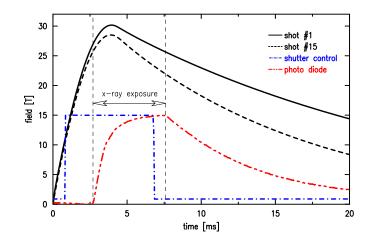
There is an urgent need for diffraction for fields above 15 T! \rightarrow Find the easiest and most cost-effective way to explore this region of the phase diagram...

How do you generate a magnetic field?


1 T: Permanent magnets. • Up to 15 T: Superconducting magnets \rightarrow ID20, 10 T. • Up to • Up to **33** T: Resistive magnets, 20 MW. • Up to 45 T: Hybrid superconducting and resistive magnets, (NHMFL, Tallahassee, 24 MW, $\approx 15 \text{ M}$ \$). (existing) 80 T: Pulsed resistive magnets, \leftarrow $\rightarrow \bullet$ Up to (project) 100 T: \approx 130 T: Destructive pulsed magnets (destroys magnet only). • Up to \approx 600 T: Destructive pulsed magnets (destroys everything). Up to above that: Neutron stars, solar storms, ...

Installations become progressively bigger, more expensive, and more difficult to manage, with exception of pulsed fields, which are scalable.




How to generate pulsed magnetic fields?

The principle is very simple:

- 1) Charge capacitor
- 2) Close switch
- 3) Current flows
- **4)** ... repeat

... but some details need to be considered:

- High voltage/high current risks: 24 kV, 6 kA
- \rightarrow Grounding, protection of beamline electronics . . .
- Stored energy:110 $\rm kJ$ (upgrade to 1.5 $\rm MJ$ planned)
- \rightarrow transformed into heat at the end of the pulse ...
- \rightarrow . . . need efficient cooling of the coil
- \rightarrow What happens in case of a fault?

High field laboratories know very well how to handle this.

Overview

- Why high magnetic fields?
- How to generate magnetic fields?
- Pulsed magnetic fields
- Application to X-ray diffraction
- Example: Jahn-Teller transition of TbVO₄
- Outlook: Future developments

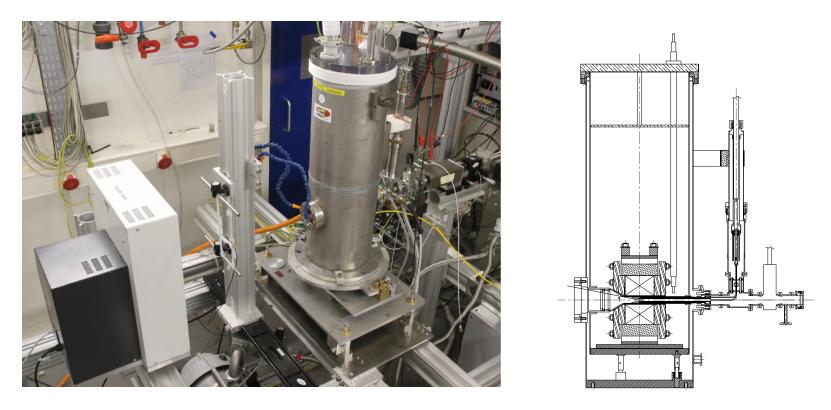
Application to x-ray diffraction

- Magnet and capacitor bank supplied by LNCMP/Toulouse
- \rightarrow Transportable capacitor bank, 130 kJ energy, 2.8 tons, $\approx 4 \, \mathrm{m}^3$.
- → Solenoid magnet, lq. N₂ cooled, maximum field 30 T, bore 22 mm, max. opening angle 22° .
- \rightarrow rise time 5 msec, decay time $\approx 20\,{\rm msec},$ 10 shots per hour.
- \bullet X-ray powder diffraction at 21 $\rm keV$
- \rightarrow Online-image plate detector
- → Fast shutter to synchronize the x-ray exposure to the magnetic field pulse.

 $30\,\mathrm{T}$ limit convenient because of wire material \rightarrow duty cycle, fatigue, \ldots \rightarrow upgrade to $60\,\mathrm{T}$ relatively straightforward

EUROPEAN SYNCHROTRON RADIATION FACILITY INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

X-ray powder diffraction on BM26B DUBBLE


Generator design: P. Frings (LNCMP).

Transportable generator:

- 2 storage modules,
 1 charger/control module
- $C = 1 \,\mathrm{mF}$, $V_{\mathrm{max}} = 16 \,\mathrm{kV}$, $E_{\mathrm{max}} = 130 \,\mathrm{kJ}$
- Total weight $\approx 2.8 \,\mathrm{t}$
- Total size (*h* × *d* × *w*) 1.25 × 1.30 × 2.85 m³
- Generator and load magnet installed in radiation hutch.
- Interlocked through radiation hutch PSS.
- Remote control over fiber optical cables.

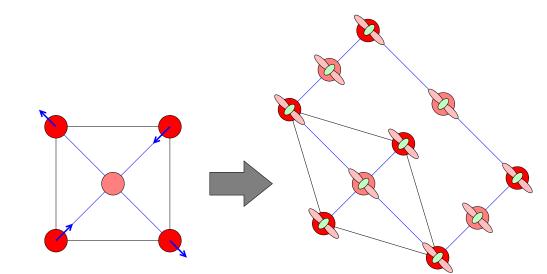

X-ray powder diffraction on BM26B DUBBLE

Coil design: J. Billette (LNCMP), cryostat design: M. Nardone, A. Zitouni (LNCMP).

X-ray powder diffraction on BM26B DUBBLE

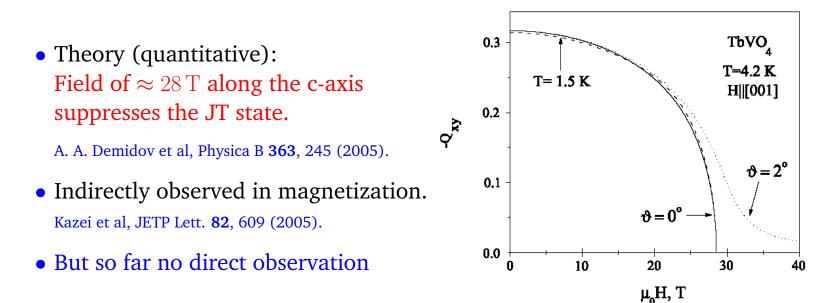
- Shutter synchronized to magnetic field pulse
- Warming of coil after sequence of pulses.
- Signal integrated over
 ≈ 5 ms per pulse.

Not ultra-fast, but not stroboscopic: Small number of pulses. Fatigue life: Design system such that 1 shot is enough.


Overview

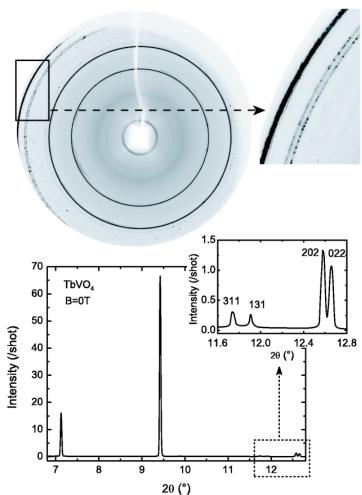
- Why high magnetic fields?
- How to generate magnetic fields?
- Pulsed magnetic fields
- Application to X-ray diffraction
- Example: Jahn-Teller transition of TbVO₄
- Outlook: Future developments

Example: Jahn-Teller transition in $TbVO_4$


- TbVO₄ is a textbook example of a cooperative Jahn-Teller transition mediated by quadrupolar interactions. $T_{\rm JT} \approx 34 \, {\rm K}$.
- The system is known since the 1970'ies and has been studied intensively at zero field. G. A. Gehring and K. A. Gehring, Rep. Prog. Phys. **38**, 1 (1975).
- Driven by Tb 4*f* quadrupole moment
- Orthorhombic distortion,
 2% along (111)
- Space group $I4_1/amd \rightarrow Fddd$

Example: Jahn-Teller transition in $TbVO_4$

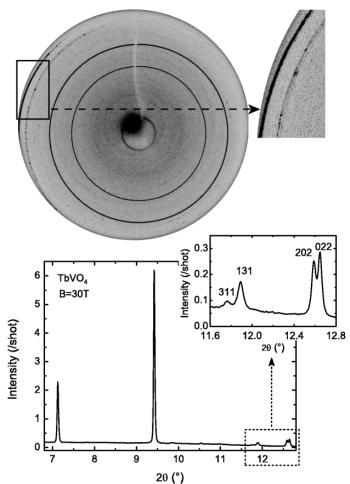
- Recently, first studies in high magnetic fields.
- Strongly anisotropic response (CF).
- Theory (qualitative): 1970'ies Competition of magnetization and quadrupolar moment



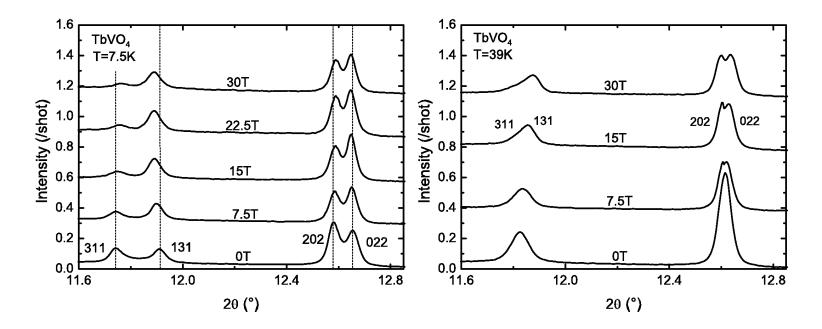
Jahn-Teller transition in TbVO₄: Raw data

- DUBBLE CRG at ESRF
- 21 keV
- MAR 345 image plate detector
- Exposure time 60 s
- B = 0 T, T = 7.5 K
- Sample:

Ground single crystals embedded in a polymer matrix to suppress grain movement and improve thermal contact.



Jahn-Teller transition in TbVO₄: Raw data


- DUBBLE CRG at ESRF
- 21 keV
- MAR 345 image plate detector
- Exposure time $15 \times 5 \,\mathrm{ms}$
- $B = 30 \,\mathrm{T}, T = 7.5 \,\mathrm{K}$
- Sample:

Ground single crystals embedded in a polymer matrix to suppress grain movement and improve thermal contact.

Jahn-Teller transition in $TbVO_4$: 2θ scans

- High temperature: small splitting induced by magnetic field.
- Low temperature: Splitting reduced by magnetic field.
- \rightarrow Complex average over phase diagram because of powder average

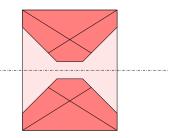
Interpretation (qualitative)

• The system is driven by the Tb 4f quadrupole moment

$$\epsilon \propto Q_{xy} = \frac{1}{2} \left(J_x J_y + J_y J_x \right)$$

Very strong L-S coupling in rare earths links magnetic moment and charge distribution.

- Coupling between quadrupole and magnetic dipole induced by magnetic field.
- $\rightarrow B \parallel (001)$: Magnetization $\propto J_z$ in competition with Q_{xy} .
- $\rightarrow B \parallel (110)$: Magnetization $\propto (J_x + J_y)$ increases Q_{xy} .
- In a powder sample: Average over all possible directions
- \rightarrow Average over different phase diagrams
- Working on quantitative data analysis with Z. A. Kazeĭ.


Overview

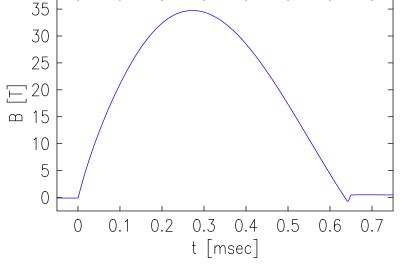
- Why high magnetic fields?
- How to generate magnetic fields?
- Pulsed magnetic fields
- Application to X-ray diffraction
- Example: Jahn-Teller transition of TbVO₄
- Outlook: Future developments

Toulouse 30T magnet system: Second generation


- New coil design for increased optical access (J. Billette, LNCMP)
 - \rightarrow Coil wound onto a double-cone
 - \rightarrow opening angle up to 31°
 - \rightarrow more powder lines available for measurement
- Installation on undulator beamline ID20
- $\rightarrow \approx \times 50$ gain in intensity
- \rightarrow Generator installed outside the radiation hutch
- First tests on the beamline 08–14/11/2006
- \rightarrow Sufficient intensity with 2–4 $\rm msec$ exposure time
- \rightarrow Need only one shot per spectrum

Toulouse 30T magnet system: Second generation

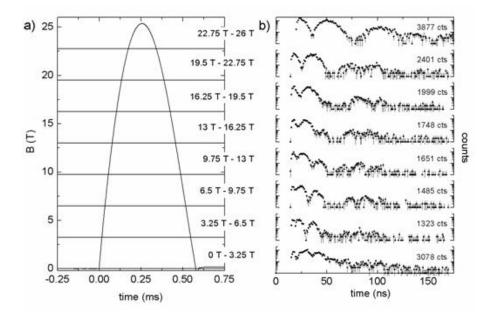
Successfully tested in X-ray magnetic circular dichroism (XMCD) experiments on ID24


• Very compact system, can be installed on any beamline.

• Rise time 250 μ s, one pulse every 10 sec.

EUROPEAN SYNCHROTRON RADIATION FACILITY INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Miniature pulsed magnetic field coils (Peter van der Linden, Olivier Mathon)



Nuclear resonant forward scattering using pulsed magnetic fields

(Cornelius Strohm, Peter van der Linden, Rudolf Rüffer)

- Nuclear Resonant Forward Scattering of $^{57}\mathrm{Fe}$ foil
- Using mini-coil system
- Total data acquisition time $\approx 8 \,\mathrm{h}$

Future developments

Short term:

- \rightarrow The technical solution we are using now has a lot of potential.
- \rightarrow Significant improvements are necessary before this can become a standard experiment with a user program.
- \rightarrow For most experiments a split coil geometry with $\vec{B} \perp \vec{k}$ is desired.
- → Try other x-ray techniques: Spectroscopy (EXAFS, XMCD), Laue diffraction can be done by installing our equipment on different beamline.

Medium/long term:

- \rightarrow Need to improve the detection efficiency. Fast 2D pixel detector?
- \rightarrow Very low temperatures, down to $100\,\mathrm{mK}.$
- \rightarrow Higher field, up to 60 T. Improved duty cycle of the magnet system.
- \rightarrow A permanent setup for capacitor banks, optimized detection system, etc.

Summary/Conclusions

- X-ray diffraction under high magnetic fields is virtually virgin ground. There is plenty to be done.
- Steady magnetic fields have the advantage that we can use proven measurement strategies, measure very small signals, etc.
- Pulsed magnetic fields require much more development of x-ray diffraction.
- But because of sample volume, time structure, etc, they can boldly go where no neutron has gone before (and very likely will ever go*).
- \rightarrow There is a scientific case for both of them.
- \rightarrow Steady fields solution is lower risk, but limited to 30–40 T.
- → Pulsed fields solution is much more speculative. But it also requires less capital investment, and the ms time resolved x-ray techniques may be of interest in other fields, such as on-line chemistry, shock waves,

* ... with the possible exception of neutron stars!