

Soutenance de thèse de Anca Mihaela APETREI

Jeudi 20 septembre 2007, 14h00, Salle B6, Bât. 399, INSTN, Saclay

Etude des pyrochlores géométriquement frustrés $R_2M_2O_7$ (M=Sn ou Mo). Influence des substitutions chimiques et/ou de la pression appliquée

Dans les oxydes R₂M₂O₇, les deux ions R³⁺ (terre rare ou Y) et M⁴⁺ (M=métal sp ou de transition) occupent des réseaux pyrochlores géométriquement frustrés. Cette étude a pour objet l'analyse de deux types de systèmes: (i) Tb₂Sn₂O₇, composé isolant dans lequel l'équilibre en énergie et l'état fondamental sont contrôlés par les interactions magnétiques entre les ions Tb³⁺ et (ii) la série (Tb_{1-x}La_x)₂Mo₂O₇ (x=0-0.2), caractérisée par la présence du magnétisme localisé du Tb³⁺ et de celui partiellement itinérant du Mo⁴⁺. Nous avons étudié l'ordre magnétique principalement par diffraction de neutrons et rotation et relaxation de spin du muon (µSR), qui grâce à leur complémentarité fournissent une information microscopique précise à la fois sur les corrélations statiques et les fluctuations de spin. Sous l'effet de la substitution chimique et/ou de la pression appliquée nous avons observé une grande variété de comportements magnétiques en variant la température: des ordres à courte portée (liquides et verres de spin), un ordre à longue portée original ("glace de spin ordonnée") ou des phases mixtes. Nous avons tenté de comprendre dans chaque cas le rôle du magnétisme de la terre rare et/ou celui du métal de transition afin de déterminer comment les interactions magnétiques favorisent un état magnétique spécifique.