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A resolution function for inelastic neutron spin-echo spectroscopy on a three-

axis spectrometer is derived. Inelastic dispersive excitations where the tilted

®eld technique applies are being considered. Using a Gaussian approximation of

the transmission function of the three-axis spectrometer and a second-order

expansion of the total Larmor phase, the instrumental resolution function of an

idealized spin-echo instrument is obtained. Furthermore, the resolution function

is extended to include the effects of sample properties, such as mosaicity, spread

in lattice spacings and the curvature of the four-dimensional dispersion surface

in a line-width measurement.

1. Introduction

Neutron spin-echo (NSE) spectroscopy increases the energy

resolution accessed by conventional neutron scattering

instruments by several orders of magnitude without signi®cant

loss of intensity. The method introduced by Mezei (1978) uses

Larmor precession to resolve small energy changes within the

resolution of a background spectrometer. In particular, the

method can be applied to study lifetimes of dispersive

elementary excitations in single crystals. A three-axis spec-

trometer (TAS) is then used as the background instrument.

Precisely shaped ®elds tilted relative to the incident and

scattered beams allow the application of the spin-echo

focusing technique (Mezei, 1980; Pynn, 1978). Distinct from

TAS focusing, where the resolution ellipsoid is matched to the

slope of the dispersion, in spin-echo focusing the instrument

parameters (tilt angles of the ®eld boundaries and ®eld inte-

gral ratio) are chosen so as to provide lines of constant phase

which are parallel to the dispersion curve.

Since NSE spectroscopy directly measures the intermediate

scattering function I��� the measurement sensitivity is

restricted by the maximum accessible spin-echo time � and the

depolarization within this � range. In order to extract intrinsic

lifetimes from experimental data, quantitative knowledge of

the instrumental resolution and other sources of signal

depolarization due to sample properties, e.g. mosaicity, spread

in lattice spacings and curvature of the dispersion surface, is of

importance.

In this paper we extend the theory of inelastic neutron spin-

echo spectroscopy to second order. We derive an expression

for the polarization as a function of spin-echo time, assuming a

dispersive excitation with zero line width of an ideal sample

without lattice imperfections (x2). This is what we will call the

instrumental resolution function.

The formalism is then extended to include sample imper-

fections. In x3 we consider the effect of mosaicity in lifetime

measurements of dispersive transverse excitation modes. The

modi®cation of the resolution function due to general lattice

imperfections is treated in more detail in x4. The limits of the

resolution function imposed by curvature of the dispersion

surface are treated in x5. Examples with typical instrumental

parameters are discussed. Throughout the discussion we will

use the TAS transmission function introduced by Cooper &

Nathans (1967).

2. Instrumental resolution

2.1. General remarks

We consider the case of a three-axis spectrometer combined

with neutron spin-echo. The NSE is idealized in the sense that

stray ®elds or ®eld inhomogeneities are not considered as a

source of signal depolarization and the spin-echo conditions

are satis®ed.

Pynn (1978) has treated the TAS second-order transmission

function and has combined it with the ®rst-order approxima-

tion of the spin-echo phase, which allows one to investigate the

effect of instrumental detuning. Instead, we expand the spin-

echo phase up to second order and assume that spin-echo

conditions are satis®ed, i.e. the spectrometer parameters are

tuned to the nominal values.

We follow the treatment of the TAS transmission function

by Cooper & Nathans (1967) based on normal (Gaussian)

distributions of instrumental parameters. In this framework,

spatial effects such as ®nite dimensions of the mono-

chromator, sample and analyser, and the monochromator or

analyser focusing, are not taken into account. Real-space

effects are quite accurately described by the formalism of

Stoica (1975) and Popovici (1975).
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The application of this formalism to the resolution function

in NSE spectroscopy will be subject of future work. In the

present article we will neglect ®nite-size effects. However, we

allow the neutron beams in the ®rst and second precession

region to have ®nite horizontal and vertical divergence. As

Dorner (1972) pointed out, the original publication of Cooper

& Nathans contains a few minor errors, which are eliminated

in our considerations.

The quasiparticle excitations are ®rst assumed to follow a

planar (linear) dispersion within the resolution ellipsoid of the

TAS. In this case, the spin-echo ®elds have to be tilted. The

general treatment discussed here includes dispersionless

excitations as a special case.

We consider a simpli®ed model of an NSE. We assume that

neutrons are monochromated by a single-crystal mono-

chromator. The incident neutrons with wavevector kI are

directed along the i1 direction, polarized along the j1 direction

and enter a well de®ned region of length L1, containing a

magnetic ®eld B1 pointing in the l1 direction (Fig. 1). The ®eld

boundaries are allowed to be tilted by an angle �1. The

polarization is treated classically and neutrons having a

polarization component perpendicular to the magnetic ®eld

will Larmor precess. After leaving the ®eld region, the

neutrons impinge on a sample where they can be scattered to a

different ®nal wavevector kF. Some of the scattered neutrons

enter a second ®eld region of length L2 where the ®eld is

oriented in the opposite direction to that in the ®rst region.

The ®eld boundaries are allowed to be tilted by an angle �2

with respect to the scattered beam. The tilt angles are de®ned

to be positive for anticlockwise rotation with respect to kI,F.

Scattered neutrons are analyzed in energy by a single-crystal

analyser and in polarization by a polarizer. Technically these

units may either be separate devices or combined (e.g. using

Heusler analyser crystals).

In the general case the polarization measured by spin-echo

is given by

P � 1

N

Z
S�Q; !�T�ki; kf� exp�i'�ki; kf�� d3ki d3kf � c:c: �1�

where S�Q!� is the scattering function, and T�ki; kf� is the

TAS transmission probability. '�ki; kf� is the sum of Larmor

precession angles before and after the sample. Here we treat '
as the classical Larmor precession angle. Alternatively, in a

quantum mechanical framework, ' is a phase shift between up

and down spin states, which semi-classically can be interpreted

as those spin states being spatially split and delayed relative to

each other (GaÈhler et al., 1996; Keller et al., 2002; Habicht et

al., 2003b). N is a normalization factor and c.c. denotes the

complex conjugate of the left-hand term.

For convenience we write the total Larmor precession angle

after the second ®eld region in a vector notation:

' � A1

ki � ni

ÿ A2

kf � nf

; �2�

where A1,2 = �m=h- �!1;2L1;2 cos �1;2, with the mass of the

neutron m. The wavevector ki;f denotes a general incident

(scattered) wavevector and ni;f are unit vectors normal to the

®eld boundaries of the precession regions before and after the

sample. The Larmor frequency is given by

!1;2 � 
B1;2; �3�
where the gyromagnetic ratio of the neutron 
 = 2� �
2.916 kHz Gÿ1. In the special case of neutron resonance spin-

echo (NRSE), A1,2 = �2�mh- ��eff
1;2L1;2 cos �1;2. Here �eff

1;2 refers to

the effective frequency, which is the frequency applied to the

RF ¯ippers times a factor of 2 or 4 depending on the number

of RF ¯ippers operated. The distances L1,2 refer to the coil

separation in the ®rst and second spin-echo arm, respectively.

See e.g. Keller et al. (2002) for details of the resonance spin-

echo technique.

2.2. First-order expansion of the spin-echo phase and spin-
echo conditions

The derivation of the spin-echo conditions for inelastic,

dispersive excitations can be found elsewhere (Keller et al.,

2002; Habicht et al., 2003b). Here we give a short review for

continuity of notation and later reference.

The point of spin-echo focusing is that the total Larmor

precession angle expanded to ®rst order will not depend on

small variations in momentum variables for a special choice of

instrumental parameters but, apart from a constant '0, only

depends on energy deviations from the (planar) dispersion

surface, i.e.

'ÿ '0 � ÿ��!; �4�
where �! = !�q� ÿ !0�q�. Here q is the wavevector of the

quasiparticle and !0�q� denotes the nominal energy of the

excitation if there were no line broadening. � is the spin-echo

time. This de®nition of �! is different from the usual TAS

language, where energy deviations are always given relative to

Figure 1
Schematic drawing of the precession ®eld regions in an inelastic NSE
scattering experiment.



!0�q0�, the centre of the resolution ellipsoid for a given setting

of the TAS.

Expanding the total Larmor precession angle to ®rst order

for the general case of tilted ®eld boundaries relative to the

incident and scattered beams, we have

'ÿ '0 � ÿ
A1

�kI � ni�2
��ki � ni� �

A2

�kF � nf�2
��kf � nf�; �5�

where kI, kF refer to the central values of incident and ®nal

wavevectors and �ki, �kf to the corresponding variations, i.e.

ki;f = kI;F ��ki;f .

We use energy and momentum conservation to change

variables and express �! as a function of �ki and �kf . To ®rst

order

h- !�q� � h- 2

2m
k2

I ÿ k2
F � 2�kI ��ki� ÿ 2�kF ��kf�

� �
: �6�

Since

h- !0�q0� �
h- 2

2m
�k2

I ÿ k2
F�; �7�

we can write

!�q� ÿ !0�q0� �
h-

m
�kI ��ki� ÿ �kF ��kf�
� �

: �8�

We assume a planar dispersion relation, a restriction later to

be relaxed, and can expand the dispersion relation to ®rst

order in �qÿ q0� such that we have

!�q� ÿ !0�q0� � �!� rq!0�q0� � �qÿ q0�: �9�
Combining (8) and (9) yields

�! � h-

m
�kI ��ki� ÿ �kF ��kf�
� �ÿ rq!0�q0� � �qÿ q0�: �10�

Since the momentum of the excitation in a perfect crystal is

q0 � kI ÿ kF ÿG0; �11�

q � ki ÿ kf ÿG0; �12�
(G0 is a reciprocal-lattice vector) we have

qÿ q0 � �ki ÿ�kf: �13�
The restriction to a perfect crystal will be relaxed later. Now

we have

ÿ��! � ÿ � h-

m
kI ÿrq!0�q0�

� �
��ki

� � h-

m
kF ÿ rq!0�q0�

� �
��kf: �14�

Comparing the coef®cients of �ki;�kf in (5) and (14) we

obtain the normal vectors to the ®eld boundaries,

ni;f �
�h- =m�kI;F ÿ rq!0�q0�
j�h- =m�kI;F ÿ rq!0�q0�j

; �15�

and identify the spin-echo time � with

� � A1;2

�kI;F � ni�2j�h- =m�kI;F ÿ rq!0�q0�j
: �16�

For equal coil distances in the ®rst and second arm, the

frequency ratio is then given by

�1

�2

� cos �2

cos �1

�kI � ni�2j�h- =m�kI ÿ rq!0�q0�j
�kF � nf�2j�h- =m�kF ÿ rq!0�q0�j

: �17�

The basic idea of spin-echo focusing is to remove any

momentum dependence of the total Larmor angle even in the

presence of ®nite dispersion. With NRSE this is achieved by

choosing the tilt angles of the RF coils �1, �2 and the frequency

ratio �1=�2 to satisfy the spin-echo conditions (15) and (17).

The spin-echo time is given by equation (16). In a more

rigorous treatment (Keller et al., 2002) it has been shown that

� can be interpreted as a relative delay of up and down

wavepackets and it becomes apparent that � is identical to the

correlation time, which is the fundamental variable in the

time-dependent van Hove density±density correlation func-

tion.

We note that the independence of the Larmor phase ' of

any of the total momentum transfer variables h- Q is strictly

true only for a ®rst-order approximation of the total Larmor

phase and a perfect match of the spin-echo conditions.

We consider the scattering function S�Q; !� of a dispersive

excitation and assume the line width and S(Q) to be inde-

pendent of Q in that part of the dispersion surface which is

located within the TAS resolution ellipsoid. Hence we can

integrate over the momentum components and therefore

P /
Z

S��!�T��!� exp�i'� d�!� c:c: �18�

with �! given by equation (10). As opposed to conventional

TAS spectroscopy, neutron spin-echo spectroscopy will only

be applied if the width of the excitation S��!� is much less

than the TAS energy resolution T��!�. In this case T��!� can

be considered to be constant. Hence the polarization directly

yields the cosine Fourier transform of the line shape:

P /
Z

S��!� cos���!� d�!: �19�

It should be noted that the phase '0 causes a rapid oscillation

of the spin-echo signal with substantial importance for the

experiment. Here, however, we are only interested in the

`envelope' of this rapidly oscillating function, which is inde-

pendent of '0.

For a Lorentzian line shape, the polarization follows a

simple exponential decay:

P��� � exp�ÿÿ��; �20�
where ÿ is the HWHM (half width at half-maximum) line

width.

2.3. Second-order expansion of the spin-echo phase

We will now discuss the Larmor phase in a second-order

approximation to include resolution effects. Expanding

equation (2) to second order we have
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' � '0 ÿ
A1

�kI � ni�2
��ki � ni� �

A2

�kF � nf�2
��kf � nf�

� A1

�kI � ni�3
��ki � ni�2 ÿ

A2

�kF � nf�3
��kf � nf�2: �21�

Here kI;F are the most probable wavevectors. ' is only a

function of the scalar wavenumber variables x1; y1; x2; y2 if we

use the de®nitions

�ki � x1i1 � y1j1 � z1l1 �22�
and

�kf � x2i2 � y2j2 � z2l2 �23�
and assume tilted ®elds such that

ni � cos �1i1 � sin �1j1 �24�
and

nf � cos �2i2 � sin �2j2: �25�
See Fig. 1 for the de®nition of the vectors i, j, k and n. Since

the precession angle can only depend on wavevector compo-

nents perpendicular to the ®eld boundaries, there is no

dependence on wavevector components z1; z2 perpendicular

to the scattering plane.

Writing the energy conservation in second order we have

�! � NIni ��ki ÿ NFnf ��kf �
h-

2m
��k2

i ÿ�k2
f �; �26�

where the ®rst two terms on the right side follow directly from

equations (14) and (15) and we have de®ned

NI;F �
h-

m
kI;F ÿrq!0�q0�

���� ����: �27�

Rewriting equation (26) we can express �kf � nf in terms of

�!, ni ��ki and �k2
f , i.e.

�kf � nf �
1

NF

ÿ�!� NIni ��ki �
h-

2m
��k2

i ÿ�k2
f �

� �
: �28�

We now substitute ��kf � nf� in equation (21) with the result

'ÿ '0 �

ÿ A2

�kF � nf�2
1

NF

�!� ÿ A1

�kI � ni�2
� A2

�kF � nf�2
NI

NF

� �
�ni ��ki�

� h-

2m

A2

�kF � nf�2
1

NF

���k2
i ÿ�k2

f �� �
A1

�kI � ni�3
��ki � ni�2

ÿ A2

�kF �nf�3
1

NF

ÿ�!� NIni ��ki �
h-

2m
��k2

i ÿ�k2
f �

� �� �2

:

�29�
We assume that the spin-echo parameters are set such that the

spin-echo conditions (15) and (17) are satis®ed, i.e. the

expression in the ®rst set of square brackets will vanish, and

introduce � as de®ned in equation (16). Neglecting the terms

higher than second order,

'ÿ '0 � ÿ ��!� �
h-

2m
��k2

i ÿ�k2
f �

� �
� � NI

�kI � ni�
��ki � ni�2

ÿ � 1

NF�kF � nf�
�ÿ�!� NI��ki � ni��2: �30�

The elimination of the �k2
f term remains. In equation (23),

�kf is written in Cartesian coordinates with i2 pointing along

kF. However, it is more convenient to transform �kf (and �ki)

to coordinates with u2 (u1) pointing along nf (ni) (see Fig. 1 for

a de®nition of these vectors); then

�kf � ��kf � nf�u2 � ÿ tan �2��kf � nf� � y2

1

cos �2

� �
v2 � z2w2

�31�
and

�ki � ��ki � ni�u1 � ÿ tan �1��ki � ni� � y1

1

cos �1

� �
v1 � z1w1:

�32�
It is suf®cient to use equation (28) to ®rst order for substitu-

tion of �kf � nf in equation (31) so that

�k2
f �

1

NF

�ÿ�!� NIni ��ki�
� �2

� ÿ tan �2

1

NF

�ÿ�!� NIni ��ki�
� �

� y2

1

cos �2

� �2

� z2
2: �33�

We have also

�k2
i � �k2

in � ÿ�kin tan �1 � y1

1

cos �1

� �2

�z2
1 �34�

with

�kin � �ki � ni: �35�
Substituting equations (33) and (34) into equation (29) and

combining squared and cross terms of �!, �kin, y1, y2, z1, z2,

the expression for the total Larmor precession angle in second

order is now

'ÿ '0 � ÿ ��!ÿ 1
2�	55z2

1 ÿ 1
2�	66z2

2 ÿ 1
2�	11�!

2

ÿ 1
2�	22�k2

in ÿ �	12�!�kin ÿ 1
2�	33y2

1

ÿ �	23�kiny1 ÿ 1
2�	44y2

2 ÿ �	24�kiny2

ÿ �	14�!y2; �36�
where we have de®ned

	11 �
h-

m

1

N2
F cos2 �2

� 2

NF�kF � nf�
; �37�

	22 � ÿ
h-

m

1

cos2 �1

� h-

m

N2
I

N2
F

1

cos2 �2

ÿ 2NI

�kI � ni�
� 2N2

I

NF�kF � nf�
;

�38�

	33 � ÿ
h-

m

1

cos2 �1

; 	44 �
h-

m

1

cos2 �2

; �39�



	55 � ÿ
h-

m
; 	66 � �

h-

m
; �40�

	12 � ÿ
h-

m

NI

N2
F

1

cos2 �2

ÿ 2NI

NF�kF � nf�
; �41�

	14 �
h-

m

tan �2

cos �2

1

NF

; �42�

	23 �
h-

m

tan �1

cos �1

; �43�

	24 � ÿ
h-

m

tan �2

cos �2

NI

NF

: �44�

As we will see later, it is advantageous to express the Larmor

phase expanded to second order in a matrix notation. The

matrix approach to the resolution problem in neutron

instrumentation has been introduced by Stoica (1975) and

applied to the TAS resolution problem by Popovici (1975).

We de®ne the six-component column vector J = (�!, �kin,

y1, y2, z1, z2) and the symmetric (6 � 6) matrix W. W has non-

zero elements as given above.

Finally, we can write the total Larmor phase in the compact

form

exp�i�'ÿ '0�� � exp�ÿi��!� exp ÿ1
2i�JTWJ

ÿ �
: �45�

Summarizing, we have expanded the total Larmor preces-

sion angle ' to second order. We have assumed that the spin-

echo conditions (15) and (17) are satis®ed. Using a transform

of variables, ' is formulated as a function of the variables �!,

�kin, y1, y2, z1, z2. The only linear dependence is in �!. All

other terms are of second order and are proportional to the

spin-echo time �. A more compact formulation of the second-

order Larmor phase is obtained in a matrix notation, which we

will make use of when performing the necessary integrations

in equation (1).

2.4. Three-axis transmission function

We now treat the transmission probability through the

three-axis instrument. We start from the expression derived by

Cooper & Nathans (1967):

T�ki; kf� � exp�
�
� exp

h
ÿ 1

2

ÿ
b5x2

1 � 2b0x1y1 � b1y2
1 � b3x2

2

� 2b4x2y2 � b2y2
2 � a2

11z2
1 � a2

12z2
2

�i
: �46�

The quantities b0ÿ5 and a2
11, a2

12 are de®ned in Appendix A.

Writing �ki and �kf in the �u1;2; v1;2;w1;2� coordinate system

and using equation (28) up to ®rst order, we transform the

variables

x1 �
1

cos �1

�kin ÿ y1 tan �1 �47�

and

x2 �
1

cos �2

NI

NF

�kin ÿ
1

NF

�!

� �
ÿ y2 tan �2: �48�

Using the same combination of squared and cross terms of

�!, �kin, y1, y2, z1, z2 as before for the Larmor phase, the

exponent 
 can be expressed as


 � ÿ 1
2�11�!

2 ÿ 1
2�22�k2

in ÿ�12�kin�!ÿ 1
2�33y2

1

ÿ�23�kiny1 ÿ 1
2�44y2

2 ÿ�24�kiny2 ÿ�14�!y2

ÿ 1
2�55z2

1 ÿ 1
2�66z2

2; �49�
with the de®nitions

�11 �
b3

cos2 �2

1

N2
F

; �50�

�22 �
b5

cos2 �1

� b3

cos2 �2

N2
I

N2
F

; �51�

�33 � b5 tan2 �1 � b1 ÿ b0 tan �1; �52�

�44 � ÿ2b4 tan �2 � b2 � b3 tan2 �2 �53�

�55 � a2
11; �66 � a2

12; �54�

�12 � ÿ
b3

cos2 �2

NI

N2
F

; �55�

�14 �
b3 tan �2

cos �2

1

NF

ÿ b4

cos �2

1

NF

; �56�

�23 � ÿ
b5

cos �1

tan �1 �
b0

cos �1

; �57�

�24 �
b3 tan �2

cos �2

NI

NF

� b4

cos �2

NI

NF

: �58�

Analogous to the Larmor phase expanded to second order, we

will also express the Cooper±Nathans exponent 
 in a matrix

notation using the column vector J = �!, �kin, y1, y2, z1, z2

and the symmetric (6 � 6) matrix N. The matrix N has non-

zero elements as de®ned above. We can therefore write the

TAS transmission probability

exp�
� � exp�ÿ1
2J

TNJ�: �59�

2.5. The s dependence of the polarization

We can now reformulate equation (1) to read

P � 1

N

Z
S�Q; !� exp�ÿi��!� exp ÿ1

2J
TLIJ

ÿ �
dJn � c:c: �60�

where we have de®ned

LI��� � N� i�W: �61�
We assume again that S�Q; !� = constant � S��!�. Further-

more, we can neglect the terms quadratic in �! and cross

terms of �! with any of the other variables since the integral

over the energy coordinate will be dominated by the linear
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term exp�ÿi��!�. This is so because for spin-echo measure-

ments to be sensible, the only case of interest is the situation

where �! is very small and hence S�!� is very narrow

compared with the TAS energy resolution.

We can therefore write

P � 1

N

Z
exp ÿ1

2
eJTeLI

eJ� �
deJn

�
Z

S�!� exp�ÿi��!� d�!� c:c: �62�

whereeJ = (�kin, y1, y2, z1, z2) andeLI is the (5 � 5) submatrix

with respect to the (�kin, y1, y2, z1, z2) subspace.

Equation (62) manifests an important result, i.e. the polar-

ization is the product of the Fourier transform of the scattering

function S�!� and a �-dependent function FI which accounts

for resolution, where

FI��� �
1

N

Z
exp ÿ1

2
eJTeLI���eJh i

deJn � c:c: �63�

Since there is no convolution of the resolution function with

the signal, this means that the result of a measurement can be

corrected for resolution by dividing the data with FI���. Also,

equation (63) follows immediately from equation (62) if we

assume the excitation to have zero line width, i.e. S�!� =

��!ÿ !0�.
We will obtain the instrumental resolution as a function of

spin-echo time by solving the integrals over the wavevector

components �kin, y1, y2, z1, z2 in equation (63). In principle,

this is possible by explicitly applying Gaussian integrals. This,

however, yields little insight and it is more convenient to make

use of the following general theorem (Miller, 1964; Zee, 2003):

Z1
ÿ1

exp ÿ1
2Y

TMY
ÿ �

dnYn �
�2��n=2

�det M�1=2
; �64�

where Y is an n-dimensional column vector and M is a posi-

tive-de®nite symmetric (n � n) matrix. In more formal detail,

we are allowed to apply this integral theorem for quadratic

forms since the Hermitian quantity (eLI + eL�I ) is positive de®-

nite. Finally, we can write

FI��� �
deteLI�� � 0�

deteLI���

" #1=2
������

������: �65�

We will call FI the instrumental resolution function since the

depolarization depends solely on instrumental parameters.

The normalization is chosen such that FI = 1 if � = 0.

2.6. Discussion

We have numerically evaluated the expression given in

equation (65) for a typical set of TAS parameters and the

transverse acoustic (TA) [2 0.1 0] phonon in Pb.1 A spin-echo

experiment investigating anharmonic phonon line widths in

Pb has been performed recently with the NRSE instrument at

the Hahn-Meitner-Institute, Berlin (Habicht et al., 2003a). The

[0 0.1 0] TA phonon has an energy of h- !0 = 0.88 meV and a

slope of the dispersion jh-rq!0�q0�j = 6.9 meV AÊ at T = 290 K.

In the calculation an incident wavenumber kI = 1.7 AÊ ÿ1 has

been assumed, which corresponds to the case of a cold-

neutron TAS. For numerical values of TAS-related parameters

see Appendix A. Note that a `bootstrap' NRSE operated with

a maximum RF frequency �max = 800 kHz gives �max = 330 ps.

In Fig. 2, we show the instrumental resolution calculated for

different spectrometer con®gurations for phonon creation, i.e.

h- ! > 0. The scattering senses are de®ned to be positive for

scattering to the left. Note that for e.g. [2 +0.1 0], it is

experimentally impossible to satisfy the spin-echo conditions

in the (SM = ÿ1, SS = +1, SA = �1) con®guration, since tilt

angles >50� would be required. Depending on the spectro-

meter con®guration, the resolution function differs only

slightly, which is explained by the small differences in the TAS

transmission function upon a change of spectrometer con®g-

uration. We note that signi®cant differences between spec-

trometer con®gurations might appear in the case of thermal

TAS instruments, where the resolution ellipsoid is much more

anisotropic and inclined relative to the dispersion.

In conclusion, the depolarization due to the instrument can

play a role within the experimentally accessible range of spin-

echo times, since in the example the polarization P��max� =

0.85. In the experiment investigating phonon line widths in Pb,

� was always less than 100 ps. Since P(100 ps) = 0.98, the

instrumental resolution is negligible.

Figure 2
Calculated instrumental resolution, i.e. the polarization as a function of
spin-echo time � for the [2� 0.1 0] TA phonon. The phonon is assumed to
have zero line width. The spectrometer con®gurations and the phonon
coordinates in r.l.u. are given in the inset. The scattering sense at the
monochromator is always SM = ÿ1. Note that the spin-echo time in
current NRSE apparatus for this speci®c phonon is limited to 330 ps, as
indicated by the vertical line. Note the logarithmic scale in polarization.

1 The program code for computational calculations can be obtained from the
correspondence author upon request.



3. Mosaic sample

As Pynn (1978) pointed out `for transverse branches . . . a

further limit to resolution will be introduced by the crystal

mosaic of the sample . . . ' Quantitatively, this is obvious from

Fig. 3: the dispersion surface will have different orientations in

space for different mosaic grains of the sample. Hence this

effect gives rise to a smearing of the dispersion surface and

therefore appears as a broadening in energy, which is different

from any intrinsic line width of the excitations.

Let us reconsider equations (10) and (12). Taking mosaic

into account we have

qÿ q0 � �ki ÿ�kf ÿG�G0 �66�
and

�G � GÿG0; �67�
where G is a reciprocal-lattice vector which is tilted with

respect to G0 by angles �� and �� in the scattering plane and

vertically. This is equivalent to the treatment of sample mosaic

given by Werner & Pynn (1971) in the case of the TAS reso-

lution function.

The energy variation in equation (10) will now have an

additional term proportional to rq!0�q0� ��G and reads

�!0 � �!� rq!0�q0� ��G: �68�
We expand the variation in the reciprocal-lattice vector to

second order in ��, ��:

�G � jG0j
ÿ��2=2ÿ��2=2

��ÿ��2=2

��

0@ 1A: �69�

We will next investigate how the sample mosaicity affects the

spin-echo amplitude for two extreme phonon examples: a

transverse phonon and a longitudinal phonon.

3.1. Transverse phonon

Since the scattering function S�Q; !� is proportional to

�Q � e�2, where e is the phonon polarization vector, for a

transverse polarized phonon the direction of q0 will be best

chosen perpendicular to G0. Hence for a transverse polarized

phonon rq!0�q0� will be perpendicular to G0 and therefore

rq!0�q0� ��G � jrq!0�q0�jjG0j ��ÿ��2

2

� �
: �70�

A more extended treatment includes all second-order terms

and is given in x4. However, we see that the leading term will

be of ®rst order in ��. Assuming a Gaussian mosaic distri-

bution, the polarization P��� will be multiplied by an integralZ
exp ÿ1

2

��

�S

� �2

ÿi�jrq!0�q0�jjG0j����
" #

d��; �71�

which has the solution

�2��S�1=2 exp ÿ1
2�

2jrq!0�q0�j2jG0j2�2
S

� �
; �72�

i.e. a Gaussian with 1� standard deviation

�jrq!0�q0�jjG0j�S�ÿ2. For a dispersionless mode, sample

mosaicity will not contribute to depolarization [jrq!0�q0�j
= 0]; however, polarization will decrease rapidly for a disper-

sive mode.

For the [2 0.1 0] TA example phonon in Pb, the polarization

will be less than 10% beyond � > 50 ps if we assume a mosaic

�S = 50. Clearly this dominates over second-order effects

considered so far.

In order to verify equation (71) we have measured the

phase shift as a function of the angular sample orientation

using a MnF2 single crystal with very low mosaic spread. The

angle of the sample with respect to the incident wavevector kI

was varied at the [1 0 0.05] magnon which has an energy

h- !0�q0� = 1.4 meV and a dispersion with slope jh-rq!0�q0�j =

7.11 meV AÊ at T = 30 K. The (1 0 0) reciprocal-lattice vector

has value G0 = 1.29 AÊ ÿ1. From these parameters we calculated

tilt angles �1 = ÿ14.4� and �2 = 3.87� and a frequency ratio of

�1=�2 = 1.185. The measurement was performed at kI = 2.0 AÊ ÿ1

at an effective frequency veff
2 = 400 kHz, which corresponds to

� = 23.5 ps. The phase shift was experimentally determined by

scanning a full period of the inelastic spin-echo signal at each
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Figure 3
Effect of the mosaic spread on the width of the dispersion surface. The
angular variation in the lattice vector G will broaden the dispersion in
energy.

Figure 4
The phase shift of the inelastic signal as a function of the angular sample
orientation �� measured at the [1 0 0.05] magnon in MnF2. Symbols are
experimental data. The line represents the phase shift as calculated from
equation (73).
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angular orientation of the sample. The theoretical phase shift

is calculated from equation (71) as

�' � ÿ�jrq!0�q0�jjG0j��: �73�
The result of the measurement is shown in Fig. 4. Theory and

experiment are in fair agreement showing the reasonableness

of our assumptions.

3.2. Longitudinal phonon

Considering a longitudinal phonon, the direction of q0 will

be best chosen parallel to G0 and

rq!0�q0� ��G � jrq!0�q0�jjG0j ÿ
��2

2
ÿ��2

2

� �
: �74�

Hence sample mosaic will only contribute in second order. A

proper discussion will require a more extended framework

which we will provide in the next section.

4. Effect of general lattice imperfections in NSE lifetime
measurements

In this section we will follow the effect of lattice imperfections,

namely horizontal and vertical mosaicity, as well as a distri-

bution of d spacings, all assumed to be Gaussian, up to second

order. We will outline the modi®cations to obtain extended

expressions for the matrix LI. We will then discuss the two

extreme cases where the gradient of the dispersion surface is

either perpendicular or parallel to the reciprocal-lattice vector

G0.

The probability of a neutron hitting a mosaic block with a

speci®c G can be formulated as

exp ÿ1
2

��2

�2
S

���2

�2
S

��G2

�2

� �� �
: �75�

Here �� is the tilt angle in the scattering plane with respect to

G0, �� is the tilt angle out of the scattering plane and �G

includes a spread in d spacings. �S, �S and � are the 1�
standard deviations for Gaussian horizontal and vertical

mosaic, and Gaussian distribution of lattice vectors, respec-

tively.

We write small variations in the reciprocal-lattice vector

expanded up to second order as

�G �
�Gÿ 1

2G0���2 ÿ��2�
�G0 ��G���ÿ 1

2G0��
2

�G0 ��G���

24 35; �76�

where the x component of this vector is parallel to G.

Since the energy variation �! has an additional term due to

sample imperfections [see equation (68)] we introduce a new

column vector JM = (�!, �kin, y1, y2, z1, z2, �G, ��, ��). The

new vector JM includes the new variables and is given by the

linear transform of the vector J

JM � IJ; �77�
where the non-zero elements of the (6 � 9) transformation

matrix I are given by

I11 � I22 � I33 � I44 � I55 � I66 � 1; �78�

I17 � Cx; I18 � CyG0; I19 � CzG0: �79�
Here Cx is the component of the group velocity C = rq!0�q0�
along the reciprocal-lattice vector G0, Cy is the component of

C right-handed perpendicular to G0 in the scattering plane,

and Cz is the component of C perpendicular to G0 out of the

scattering plane.

The new matrix which includes sample imperfections is then

given by

LM � ITLII� N�W �80�
where the (9 � 9) matrix N has non-zero elements

N77 �
1

�2
S

; N88 �
1

�2
S

; N99 �
1

�2
S

; �81�

and W accounts for the quadratic terms in �G, �� and ��,

which arise from the linear term ÿi��!0 in the exponent of

equation (60). The symmetric (9 � 9) matrix W has non-zero

elements

W78 � W87 � ÿi�Cy; W79 � W97 � ÿi�Cz; �82�

W88 � ÿi�CxG0; W99 � ÿi��Cx ÿ Cy�G0: �83�
As emphasized in the preceding section, we have also linear

terms in �G, �� and �� which we write as TT
MJM where the

column vector TM = i�(0, 0, 0, 0, 0, 0, Cx, CyG0, CzG0).

We can now write

2h�xi �
1

N

Z
S�Q; !� exp�ÿi��!� exp TT

MJM

ÿ �
� exp ÿ1

2 JT
MLMJM

ÿ �
dJM;n � c:c: �84�

We assume again that S�Q; !� = S�!�, i.e. the scattering

function is independent of Q, and can separate the resolution

by neglecting the terms in �! higher than ®rst order. We thus

write

FM �
1

N

Z
exp eTT

M
eJM

� �
exp ÿ1

2
eJT

M
eLM
eJM

� �
deJM;n � c:c: �85�

whereeJM = (�kin, y1, y2, z1, z2, �G, ��, ��),eTM = i�(0, 0, 0, 0,

0, Cx, CyG0, CzG0) and eLM is the (8 � 8) submatrix with

respect to the (�kin, y1, y2, z1, z2�G, ��, ��) subspace. We

make use of the general theorem (Miller, 1964)Z1
ÿ1

exp TTY
ÿ �

exp ÿ1
2Y

TMY
ÿ �

dnYn

� �2��n=2

�det M�1=2
exp 1

2T
TMÿ1T

ÿ �
: �86�

The generalized resolution function now includes Gaussian-

approximated sample imperfections and can be expressed as

FM �
deteLM�� � 0�

deteLM���

" #1=2

exp 1
2
eTTeLÿ1

M
eT� �������
������: �87�



We will now give examples for the two extreme cases where

the gradient of the dispersion surface is either perpendicular

or parallel to the reciprocal-lattice vector G0.

4.1. Transverse phonon

The polarization as a function of spin-echo time for the

[2 +0.1 0] TA Pb phonon assuming zero line width is shown in

Fig. 5. Mosaicity is a parameter. The curves are calculated

from equation (87).

The dominating term which causes the polarization to decay

is

exp 1
2
eTTeLÿ1

M
eT� ���� ��� � exp ÿ1

2�
2C2

yG2
0�

2
S

ÿ �
; �88�

as derived in equation (72). This exponential decay with

quadratic � dependence is a consequence of the fact that

mosaicity appears in the spin-echo phase in ®rst order.

4.2. Longitudinal phonon

Considering a longitudinal excitation it is �G which

appears in ®rst order in the spin-echo phase.

The dominating term is then

exp 1
2
eTTeLÿ1

M
eT� ���� ��� � exp ÿ1

2�
2C2

x�2
ÿ �

: �89�
Typical deviations in lattice spread are of the order of 10ÿ4 for

standard crystals. Note that � depends linearly on the

magnitude of the reciprocal-lattice vector, i.e. � = 10ÿ4G0. The

resulting polarization as a function of spin-echo time is given

in Fig. 6 for the [1.9 0 0] LA phonon in Pb, which has an energy

of 1.65 meV and a gradient Cy = 13 meV AÊ at T = 290 K. The

example was calculated for kI = 1.52 AÊ ÿ1. This gives a scat-

tering angle at the sample 2�S = 122� and tilt angles �1 = 17.3�,
�2 = ÿ49.5� without reversal of the relative ®eld directions in

the ®rst and second precession region, i.e. B1jjB2. We have

calculated the polarization from the total resolution function,

i.e. from equation (87). We see that instrumental resolution

and sample-related resolution are comparable if � ' 10ÿ5G0.

To give an idea how sample mosaicity affects the resolution in

measurements of longitudinal excitations, we have also

included the resolution function for � = 0, but �� = �� = 600.
The sample can have rather large mosaic spreads before these

play an important role in resolution.

5. Curvature of the dispersion surface

In addition to instrumental resolution and lattice imperfec-

tions, there is another effect to be considered in lifetime

measurements of elementary excitations distinct from intrinsic

line-width broadening. If the dispersion surface is signi®cantly

curved within the resolution ellipsoid of the background TAS,

this leads to a decrease in polarization depending on the spin-

echo time.

Let us consider a perfect sample without any lattice

distortions, such as mosaicity or variation of d spacings. The

curvature of the dispersion surface is included by the second-

order derivatives in the expansion of the dispersion relation.

Equation (26) will then have an additive term

ÿ1
2�qTH�q: �90�

Here H is the symmetric (3 � 3) Hessian which is de®ned as

H � RTH0R; �91�
with

H 0ij �
@2

@qi@qj

!�q�
�����

q�q0

: �92�

H0 is expressed in coordinates of the reciprocal lattice. The

matrix R transforms H0 such that H is expressed in the coor-

dinate system of Q, i.e. i0, j0, l0 (Fig. 1). For simplicity we
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Figure 5
Effect of mosaic spread on the polarization of the inelastic signal. The
curves are calculated for the [2 +0.1 0] TA phonon in Pb. Note that the
mosaic spread �S is the 1� standard deviation.

Figure 6
The resolution function for a sample with lattice imperfections. The
curves are calculated for the [1.9 0 0] LA phonon in Pb. Note the
logarithmic scale in polarization.
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restrict ourselves to a tetragonal crystal with the (a*, b*) plane

being the scattering plane and R being a simple rotation

matrix

R �
f d 0

ÿd f 0

0 0 1

0@ 1A �93�

with

d � ÿ sin#; f � cos#; �94�

a � sin �; b � cos �; �95�

A � sin �; B � ÿ cos �; �96�
where # is the angle between Q and q, � is the angle between

kI andÿQ, and � is the angle between Q and kF. Also, �q can

be expressed in the coordinate system of Q as

�q � ki ÿ kf �
bx1 � ay1 ÿ Bx2 ÿ Ay2

ÿax1 � by1 � Ax2 ÿ By2

z1 ÿ z2

0@ 1A: �97�

The modi®ed matrix which includes the effect of a curved

dispersion surface is given by

LC � LI � i�IT
CHTHHIC; �98�

where the purpose of the transformation matrix �HIC� is to

transform the Hessian H into the appropriate coordinate

space of LI. The matrix H describes the transformation

�q � HY; �99�
where the column vector Y = (x1, y1, z1, x2, y2, z2) and H is

given by

H �
b a 0 ÿB ÿA 0

ÿa b 0 A ÿB 0

0 0 1 0 0 ÿ1

0@ 1A: �100�

IC relates Y and J with the linear transformation Y = ICJ. The

non-zero elements of the (6 � 6) matrix IC are given by

IC12 �
1

cos �1

; IC13 � ÿ tan �1; �101�

IC41 � ÿ
1

NF cos �2

; IC42 �
NI

NF cos �2

; �102�

IC44 � ÿ tan �2; �103�

IC23 � IC35 � IC54 � IC66 � 1: �104�

Finally, the resolution function which includes instrumental

effects and depolarization due to curvature of the dispersion

surface is given by

FC �
deteLC�� � 0�

deteLC���

" #1=2
������

������; �105�

where eLC is the (5 � 5) submatrix with respect to the (�kin,

y1, y2, z1, z2) subspace.

If curvature of the dispersion surface is to be considered in

an imperfect sample, we account for all sample- and instru-

ment-related resolution effects if in equation (80) LI is

replaced by LC and equation (87) gives the total resolution

function.

Figure 7
Depolarization due to curvature of the dispersion surface for the [2 � 0]
TA phonon in Pb. � = 0.05 r.l.u. (solid), � = 0.10 r.l.u. (dashed), � = 0.15
r.l.u. (dotted). The intrinsic phonon line width has been assumed to
vanish, i.e. ÿ = 0.

Figure 8
The [0.025 0.025 0] TA phonon in Pb at T = 50 K. Depolarization due to
mosaic spread (dotted) with �S = 1.80, curvature of the dispersion surface
(dashed) and the combined effect of both (solid line). Solid circles:
experimental data of an NRSE line-width measurement.



5.1. Discussion and experimental verification

As an example we consider again transverse acoustic

phonons in Pb. For determination of the curvature parameters

we approximate the dispersion by the expression

h- !0�q� � Eh sin2 �

2
qh

� �
� sin2 �

2
qk

� �
� sin2 �

2
ql

� �h i1=2

;

�106�
which is a reasonable approximation of the dispersion in the

small-q limit. Here Eh is the phonon energy at the Brillouin

zone boundary and qh, qk, ql are the components of the

phonon wavevector in r.l.u. along a*, b*, c*. The elements of

the Hessian H are then given by the second-order derivatives

of equation (106). In Fig. 7 we show the � dependence of the

polarization as calculated from equation (105). We see that the

resolution function signi®cantly varies with the phonon

wavevector q. Hence, in general it is not justi®ed to assume a

resolution function which is independent of q. The variation

with temperature is less signi®cant.

In Fig. 8 we compare the calculated � dependence of the

polarization with experimental data which were collected in

the study of anharmonic line widths in Pb. The calculated

resolution curves have been normalized with a �-independent

constant: the experimentally determined polarization from

[2 0 0] Bragg scattering since the experimental calibration with

the elastic signal shows very little variation with �. Although in

the inelastic signal there is signi®cant depolarization, the

decay of the polarization can be explained entirely by the

mosaicity of the sample and the curvature of the dispersion.

Within statistics the intrinsic phonon line width is consistent

with zero.

We have shown that sample mosaicity and curvature of the

dispersion surface can lead to a signi®cant depolarization in a

high-resolution experiment combining the N(R)SE and TAS

neutron scattering techniques. If this is the case, the measured

polarization should be corrected for resolution by dividing the

experimental polarization with the resolution function. Since

the resolution function is inaccessible experimentally, in most

cases one has to rely on the calculated resolution. In Fig. 9 we

present line widths as obtained from raw data and corrected

data.

6. Conclusions

The theory of inelastic neutron spin-echo spectroscopy has

been extended to second order. Thus resolution effects are

taken into account. The polarization as a function of spin-echo

time is obtained for the general case of a dispersive excitation.

Mosaicity is of particular importance in the determination of

lifetimes of dispersive transverse excitation modes. The

experiment con®rms the depolarization due to sample mosaic.

We have included curvature of the dispersion surface in our

considerations of the resolution and have shown curvature to

be a signi®cant source of depolarization under experimental

conditions. Our approach offers the opportunity to calculate

resolution effects with N(R)SE-TAS instrumentation and to

use the results for detailed planning of N(R)SE-TAS experi-

ments.

Instrumental resolution can be separated from the signal

since the resolution and the signal factorize. Hence the

approach can be used for data correction of experimental

results in N(R)SE-TAS experiments. This is of particular

importance since in general an experimental calibration of the

inelastic signal is not possible and the only clue to absolute

line-width determinations is the calculated resolution.

APPENDIX A
Definition of TAS-related quantities

The quantities b0ÿ5 and a2
11, a2

12 as used in equation (46) are

de®ned to be

b0 � a1a2 � a7a8; �107�

b1 � a2
2 � a2

3 � a2
8; �108�

b2 � a2
4 � a2

6 � a2
10; �109�

b3 � a2
5 � a2

9; �110�

b4 � a5a6 � a9a10; �111�

b5 � a2
1 � a2

7; �112�
and

a1 �
tan �M

�MkI

; a2 �
1

�MkI

; a3 �
1

�1kI

; �113�

a4 �
1

�2kF

; a5 �
tan �A

�AkF

; a6 � ÿ
1

�AkF

; �114�
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Figure 9
Phonon line widths of the [� 0 0] TA mode in Pb. Open symbols: line
widths obtained from a ®t to raw data. Solid symbols: line widths obtained
from a ®t to data corrected for curvature of the dispersion surface and
mosaic spread.
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a7 �
2 tan �M

�0kI

; a8 �
1

�0kI

; a6 �
2 tan �A

�3kF

; �115�

a10 � ÿ
1

�3kF

; �116�

a2
11 �

1

4�02M sin2 �M � �2
0

� 1

�2
1

� �
1

k2
I

; �117�

a2
12 �

1

4�02A sin2 �A � �2
3

� 1

�2
2

� �
1

k2
F

: �118�

All quantities except a2
11, a2

12 are as de®ned by Cooper &

Nathans (1967). The latter quantities are correctly de®ned

according to Dorner (1972). The same notation as employed

by Cooper & Nathans (1967) is used, i.e. 
i and �i are de®ned

to be the horizontal and vertical divergence angles with

respect to the optimum directions, respectively, and i = 0, 1, 2,

3, refer to in-pile, monochromator-to-sample, sample-to-

analyser, and analyser-to-detector regions, respectively. �M, �0M
and �A, �0A are the horizontal and vertical monochromator and

analyser mosaic angles (1� standard deviation) where ��M;
��A are the horizontal and ��0M, ��0A are the vertical tilts of

the re¯ecting crystallites. �i, �i are the characteristic hori-

zontal and vertical collimator angles. kI and kF are the most

probable incident and ®nal wavevectors if the monochromator

and analyser angles are set to �M, �A:
Except where differently stated, all numerical calculations

presented here use values appropriate for the NRSE instru-

ment combined with the TAS V2 at the Berlin Neutron

Scattering Centre. �M, �A are calculated from the d spacings of

the monochromator and analyser, which are dM;A = 3.355 AÊ ,

corresponding to the 002 re¯ection of pyrolytic graphite.

�M � 300; �0M � 300; �A � 300; �0A � 300;
�0 � 500; �0 � 300; �0 � 300; �0 � 300;
�0 � 500; �0 � 850; �0 � 1100; �0 � 3800:

�119�

Mosaicity and collimation parameters are given as FWHM.

Except where differently stated, scattering senses at the

monochromator, sample and analyser are chosen to be SM =

ÿ1, SS = ÿ 1and SA = +1, where the positive sign refers to

scattering to the left.

Valuable discussions with R. Pynn are gratefully acknowl-

edged.
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