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This article describes the energy resolution of spin-echo three-axis spectro-

meters (SE-TASs) by a compact matrix formalism. SE-TASs allow one to

measure the line widths of elementary excitations in crystals, such as phonons

and magnons, with an energy resolution in the meV range. The resolution

matrices derived here generalize prior work: (i) the formalism works for all

crystal structures; (ii) spectrometer detuning effects are included; these arise

typically from inaccurate knowledge of the excitation energy and group velocity;

(iii) components of the gradient vector of the dispersion surface d!/dq

perpendicular to the scattering plane are properly treated; (iv) the curvature of

the dispersion surface is easily calculated in reciprocal units; (v) the formalism

permits analysis of spin-echo signals resulting from multiple excitation modes

within the three-axis spectrometer resolution ellipsoid.

1. Introduction

Neutron triple-axis spectrometers (TASs) are traditionally

used to measure dispersion relations of elementary excitations

in single crystals (Shirane et al., 2002). The energy resolution

of TASs is a few per cent of the incident neutron energy, which

is sufficient to determine the energy of an excitation but not its

intrinsic line width. This limitation of TASs was overcome by a

proposal of Mezei (1978, 1980) to combine a spin-echo spec-

trometer consisting of precession devices (PDs) up- and

downstream of the sample with the TAS. Inside these PDs, the

neutron spins undergo Larmor precession, and the net

precession angle after passing both PDs is proportional to the

energy transfer h- ! (Fig. 1). In practice, such a combined spin-

echo triple-axis spectrometer (SE-TAS) boosts the bare TAS

energy resolution by two orders of magnitude. The cost of this

improved energy resolution is a loss of intensity, as the spin-

echo technique requires the neutron beam to be polarized and

analysed.

For a spin-echo measurement, the TAS resolution volume,

usually approximated by an ellipsoid in (Q, !) space, is placed

onto the excitation of interest (Fig. 2). The TAS then works as

a so-called background spectrometer defining the momentum

resolution and a coarse energy resolution; the latter helps to

suppress background. The spin-echo part is shown as planes of

constant phase (PCP), where all scattering events lying on

such a plane get the same net Larmor phase, and parallel

planes correspond to constant phase differences. If these

planes are tuned to be parallel to the dispersion surface, the

phase differences �� of scattering events encode the intrinsic

energy width of the excitation. This tuning is achieved by
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selecting appropriate magnitudes of the magnetic fields B1;2

and the inclination angles �1;2 of the field boundaries of the

PDs. As the PCP are flat, whereas the dispersion surface in

general is curved, a finite energy resolution is introduced,

corresponding to the deviation between planes and dispersion

within the volume of the ellipsoid.

Present SE-TASs take advantage of the resonance spin-

echo technique to implement the PDs (Golub & Gähler, 1987;

Gähler & Golub, 1988). Neutron resonance spin-echo (NRSE)

is based on small radiofrequency spin-flip coils to define the

boundaries of the PDs. Inclination of the boundaries is

achieved by rotating these coils. The first instrument based on

this technique is FLEX-NRSE, which allows one to measure

line widths of elementary excitations over broad ranges of

momentum and energy transfer with an energy resolution as

low as 1 meV. That is roughly two orders of magnitude better

than on conventional neutron spectrometers. The first line-

width studies included phonons and rotons in superfluid 4He

(Keller et al., 2004), phonon anharmonicities in Pb (Habicht et

al., 2004) and magnon–magnon scattering in the model

Heisenberg antiferromagnet MnF2 (Bayrakci et al., 2006). The

data for the latter experiment were completed at the NRSE-

TAS instrument TRISP at the FRM II (Keller, Habicht et al.,

2002), which was constructed on the basis of the FLEX design.

A second NRSE-TAS instrument using the FLEX-NRSE

design with modified radiofrequency flippers is ZETA at the

ILL (Klimko et al., 2003; Martin et al., 2011). Recently, a new

design of the PDs based on superconducting magnetic

Wallaston prisms reached a performance comparable to that

of NRSE (Li et al., 2017). These prisms are more compact than

the current NRSE designs and can be easily integrated in

existing polarized TAS instruments.

An adequate description of the energy resolution of SE-

TASs is needed both for planning experiments and for the

data analysis. A compact resolution matrix formalism based

on a second-order expansion of all relevant parameters,

including the TAS resolution, the curvature of the dispersion

surface, and the spread of both the crystal mosaicity and

lattice spacing, is available (Habicht et al., 2003). However,

this formalism is limited to tuned instruments, meaning that

the TAS resolution ellipsoid is centred on the excitation (q0,

!0), and the PCP are perfectly tangential to the dispersion

surface at this point. Detuning effects are included in the

generalized formalism presented in this work. These effects

typically arise from inaccurate values of the energy and the

group velocity of an excitation, such that the TAS ellipsoid is

not centred on the excitation and the PCP are not properly

aligned. The formalism then allows one to calculate the

accuracy of the spin-echo linewidth data on the basis of an

error estimate of the dispersion parameters. Unavoidable

detuning effects occur if several dispersion branches with

different energies and/or group velocities appear within the

volume of the TAS resolution ellipsoid, for example if multiple

modes are split or otherwise not well separated. It is not

possible to tune the instrument to all modes and the detuning

that arises can be described with the new formalism. A first

application was the analysis of split magnon branches emer-

ging from two misaligned crystallites (Habicht et al., 2010).

The new formalism was also tested on split phonon modes

from crystals with controllable misalignment.

The current work further extends the formalism presented

by Habicht et al. (2010). After a brief summary of the basic

spin-echo equations we derive the generalized resolution

matrix, where all relevant parameters are expanded to second

order and are assumed to follow Gaussian distributions. We

apply the resolution matrix to a few practical cases and to

experimental results on model systems.
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Figure 1
Spin-echo triple-axis spectrometer layout. M and A are the TAS
monochromator and analyser, respectively, defining kI;F, and D is the
detector. The precession devices (PDs, blue regions) provide DC fields
B1;2 and boundaries with inclination angles �1;2. Several coordinate
systems are used in the calculations: ii1;2 k kI;F, j1;2 ? kI;F in the scattering
plane, l1;2 perpendicular to the scattering plane. The inset shows the
scattering triangle Q ¼ kI � kF, where Q is expressed in coordinates
i0 k Q; j0 ? Q in the scattering plane, i0 perpendicular to the scattering
plane. The vectors nI;F normal to the field boundaries are described in
coordinates ni;f k nI;F; ti;f ? nI;F in the scattering plane, and si;f perpendi-
cular to the scattering plane.

Figure 2
The TAS resolution ellipsoid (blue) cuts a small section (red) of the
curved dispersion surface (green). The planes of constant SE phase (PCP,
dark blue) are parallel to a plane oriented tangentially to the dispersion
surface.



2. Resolution matrix

2.1. Simplified model of SE-TASs

We first give a brief summary of the SE-TAS resolution

properties, where we assume perfect PDs with uniform fields

(without fringing fields). The normal vectors ni;f are within the

scattering plane defined by kI;F. In a later step we will allow for

arbitrary inclination of the PD boundaries. We further assume

that there is only one dispersion surface within the TAS

resolution ellipsoid and that the ellipsoid is centred on the

point (q0, !0) on this dispersion. Later, we will generalize the

formalism to allow for more than one dispersion surface and

an off-centred resolution ellipsoid.

The basic setup and all coordinate systems are shown in

Fig. 1. The incident and scattered neutrons have mean wave-

numbers kI;F, indicated by capital indices. The PDs provide

uniform magnetic fields B1;2 of length L1;2 with boundary

inclination angles �1;2. Positive angles correspond to counter-

clockwise rotation. In this article, we give the polarization P as

a complex number. The physical polarization of the neutron

beam is the real part ReðPÞ and the magnitude jPj is the so-

called echo amplitude. P downstream of the second PD is

P ¼
1

N

Z
SðQ; !ÞRTASðki; kfÞ exp½i�ðki; kfÞ� d

3ki d3kf; ð1Þ

where SðQ; !Þ is the scattering function, RTASðki; kfÞ is the

TAS transmission function, N is a normalization constant and

�ðki; kfÞ is the net Larmor phase:

�ðki; kfÞ ¼ �0ðkI; kFÞ þ��ð�ki;�kfÞ

¼
A1

ki � nI

�
A2

kf � nF

ð2Þ

with A1;2 ¼ ðm=h- Þ!L1;2L1;2 cos �1;2, the neutron mass m, the

Larmor frequency !L1;2 ¼ �B1;2 and the gyromagnetic ratio of

the neutron � ¼ 2�� 2:916 kHz G�1. We treat the Larmor

precession in a classical way; a quantum mechanical treatment

is given by Gähler et al. (1998), Keller, Golub et al. (2002) and

Habicht (2003). The actual wavenumber ki;f of a neutron

deviates from the mean: ki;f ¼ kI;F þ�ki;f . Further, we use the

conventional definitions Q0 ¼ q0 þG0 ¼ kI � kF and

!0 ¼ !ðq0Þ ¼ h- =2mðk2
I � k2

FÞ, where q0 is the momentum of

the excitation and G0 is a reciprocal-lattice vector.

The spin-echo (SE) tuning conditions for the PD inclination

angles and field ratio are obtained from a first-order expansion

of the Larmor phase [see equation (2)]:

nI;F ¼
ðh- =mÞkI;F � rq!0ðq0Þ

NI;F

; ð3Þ

!L1L1

!L2L2

¼
cos �2 kI � nIð Þ

2
NI

cos �1 kF � nFð Þ
2
NF

; ð4Þ

with

NI;F ¼
h-

m
kI;F � rq!0ðq0Þ

���� ����: ð5Þ

The so-called SE time � is given by

� ¼
A1;2

kI;F � nI;F

� �2
NI;F

: ð6Þ

If the tuning conditions (3) and (4) are satisfied, the simple

relation �� ¼ ��! holds, where �! ¼ 0 is defined by a

plane of constant Larmor phase tangential to the dispersion

sheet. The value for � from equation (6) is then the same for

the two PDs.

2.2. Second-order expansion of the SE phase

For a general calculation of the resolution function, we

expand the phase [equation (2)] to second order in �ki;f and

�!. The TAS resolution ellipsoid will be described by

including the matrix elements derived by Popovici (1975) and

Stoica (1975). The calculation follows Habicht et al. (2003), but

we allow for the following generalizations: (i) The SE might be

detuned; this means equations (3) and (4) are not satisfied.

This includes a detuning of the TAS in the sense that the

resolution ellipsoid is not centred at the nominal excitation

ðq0; !0Þ. (ii) There are no restrictions to the crystallographic

symmetry of the sample crystal. All vectors in the following

calculations are assumed to be expressed in Cartesian coor-

dinates, which are related to the crystal lattice by the UB

matrix formalism (Lumsden et al., 2005). (iii) The local

gradient of the dispersion surface r!ðq0Þ may have compo-

nents perpendicular to the scattering plane.

The Larmor phase [equation (2)] expanded to second order

is

� ki; kfð Þ ��0 ¼

�
A1

kI � nið Þ
2 �ki � nið Þ þ

A2

kF � nfð Þ
2 �kf � nfð Þ

þ
A1

kI � nið Þ
3

�ki � nið Þ
2
�

A2

kF � nfð Þ
3

�kf � nfð Þ
2: ð7Þ

The aim is to express the total Larmor precession angle in

terms of the vector J ¼ ð�!;�kin; y1; y2; z1; z2Þ with

�ki ¼ x1i1 þ y1j1 þ z1l1; ð8Þ

�kf ¼ x2i2 þ y2j2 þ z2l2; ð9Þ

�kin ¼ �ki � ni: ð10Þ

As a next step we expand the dispersion relation. Here we

have to include both the curvature of the dispersion surface

and variations of the reciprocal-lattice vector G arising from

sample imperfections, that is the mosaicity and a spread of the

lattice spacing of the sample crystal. Both effects are treated in

detail in xx2.4 and 2.5. At this point of the calculation, we

anticipate the definition of a curvature matrix H0, which

incorporates the second derivatives of the dispersion surface.

Expanding the dispersion relation to second order we obtain

!ðqÞ ¼ !ðq0Þ þ�!þ�q � r!ðq0Þ þ
1

2
�qTH0�q ð11Þ

with q ¼ q0 þ�q, q0 þG0 ¼ kI � kF and �q ¼ �ki ��ki.

We assume that the line width of the excitation is constant

within the volume of the TAS resolution ellipsoid, such that
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�! does not depend on q. The reciprocal-lattice vector G

varies around G0 owing to sample imperfections, including the

mosaic spread and variations in the lattice spacing corre-

sponding to a variation of the magnitude and direction of G,

respectively:

G ¼ G0 þ�G: ð12Þ

Since the momentum transfer is defined as

Q ¼ ki � kf ¼ Gþ q ð13Þ

the lattice imperfections �G lead to an additional variation of

the wavevector:

�q0 ¼ �q��G ¼ �ki ��kf ��G: ð14Þ

Combining equations (11) and (14) gives

!ðqÞ ¼ !ðq0Þ þ�!þ�ki � r!ðq0Þ ��kf � r!ðq0Þ

��G � r!ðq0Þ þ
1

2
�q0TH0�q0: ð15Þ

The energy conservation !ðqcÞ ¼ h- =2mðk2
i � k2

f Þ expanded to

second order reads

!ðqÞ ¼ !ðq0Þ þ
h-

m
kI ��ki �

h-

m
kF ��kf þ

h-

2m
�k2

i �
h-

2m
�k2

f :

ð16Þ

Combining equations (15) and (16) yields

�! ¼
h-

m
kI � rrr!ðq0Þ

� �
��ki þ

h-

2m
�k2

i �
h-

2m
�k2

f

�
h-

m
kF � rrr!ðq0Þ

� �
��kf þ�G � rrr!ðq0Þ

�
1

2
�q0TH0�q0: ð17Þ

In the next step we allow for detuning both the field ratio and

the inclination angles of the PDs. Then equation (6) yields

different values for the two PDs:

�1;2 ¼
A1;2

kI;F � ni;f

� �2
NI;F

: ð18Þ

To obtain the relevant second-order terms, we first multiply

equation (17) with �2:

�2�! ¼
A2

kF � nfð Þ
2NF

h-

m
kI � rrr!ðq0Þ

� �
��ki

�
A2

kF � nfð Þ
2

ðh- =mÞkF � rrr!ðq0Þ

NF

��kf

þ
h-

2m
�2�k2

i �
h-

2m
�2�k2

f þ �2�G � rrr!ðqc0Þ

�
1

2
�2�q0TH0�q0

¼
A2

kF � nfð Þ
2

NI

NF

"""i ��ki �
A2

kF � nfð Þ
2
"""f ��kf

þ
h-

2m
�2�k2

i �
h-

2m
�2�k2

f þ �2�G � rrr!ðq0Þ

�
1

2
�2�q0TH0�q0: ð19Þ

We define the unit vectors

"""i;f ¼
ðh- =mÞkI;F � rrr!ðqc0Þ

NI;F

ð20Þ

with the components ei;f1, ei;f2, ei;f3 in the coordinates defined in

Fig. 1:

ei1;f1 ¼ """i;f � ni;f; ei2;f2 ¼ """i;f � ti;f; ei3;f3 ¼ """i;f � si;f: ð21Þ

Inserting equation (21) in equation (19) yields

A2

kF � nfð Þ
2
�kf � nf ¼ ��

00
2 �!þ �002 NIei1�kin

þ �002 NIei2 ��kin tan �1 þ y1

1

cos �1

� �
þ �002 NIei3z1 � �

00
2 NFef3z2

� �002 NFef2

1

cos �2

y2 þ
h-

2m
�002 �k2

i

�
h-

2m
�002 �k2

f þ �
00
2 �G � rrr!ðq0Þ

�
1

2
�002 �q0TH0�q0 ð22Þ

with

�002 ¼
�2

ef1 � ef2 tan �2ð Þ
: ð23Þ

In deriving equation (22) the following relations for �ki;f

expressed in the basis of ni;f, ti;f and si;f were used:

si ��ki ¼ z1; ð24Þ

sf ��kf ¼ z2; ð25Þ

ni ��ki ¼ �kin; ð26Þ

�ki ¼ x1 cos �1 þ y1 sin �1ð Þni

þ �x1 sin �1 þ y1 cos �1ð Þti þ z1si

¼ �kinni þ ��kin tan �1 þ y1

1

cos �1

� �
ti þ z1si; ð27Þ

�kf ¼ �kf � nfð Þnf þ � �kf � nfð Þ tan �2 þ y2

1

cos �2

� �
tf þ z2sf;

ð28Þ

ti ��ki ¼ ��kin tan �1 þ y1

1

cos �1

; ð29Þ

tf ��kf ¼ � �kf � nfð Þ tan �2 þ y2

1

cos �2

: ð30Þ

Substituting equation (22) into equation (7) gives the Larmor

phase:
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�ðki; kfÞ ��0 ¼ ��1NI�kin � �
00
2 �!þ �002 NIei1�kin

þ �002 NIei2 ��kin tan �1 þ y1

1

cos �1

� �
þ �002 NIei3z1 � �

00
2 NFef2

1

cos �2

y2 � �
00
2 NFef3z2

þ �002 �G � rrr!ðq0Þ �
1

2
�002 �q0TH0�q0

þ
h-

2m
�002 �k2

i �
h-

2m
�002 �k2

f

þ �1

NI

kI � ni

�k2
in � �2

NF

kF � nf

�kf � nfð Þ
2: ð31Þ

This expression of the Larmor phase includes second-order

terms with the above-mentioned generalizations.

The term ð�kf � nfÞ
2 in equation (31) is now substituted by

using equation (22). Since only second-order effects are

considered and higher-order terms are neglected, it is suffi-

cient to use equation (22) to first order only:

�kf � nf ¼ �
1

CfNF

�!þ
NICi

NFCf

�kin þ
NI

CfNF

ei2

1

cos �1

y1

�
1

Cf

ef2

1

cos �2

y2 þ
NI

CfNF

ei3z1 �
1

Cf

ef3z2

þ
1

CfNF

�G0 � rrr!ðq0Þ ð32Þ

with

�2 ¼
A2

kf � nfð Þ
2
NF

; ð33Þ

Ci ¼ ei1 � ei2 tan �1; ð34Þ

Cf ¼ ef1 � ef2 tan �2: ð35Þ

The term þð1=CfNFÞ�G0 � rrr!ðq0Þ considers only the first-

order terms arising from the lattice imperfections. This term

introduces cross terms between the lattice imperfection vari-

ables ��, �� (horizontal and vertical mosaic) and �Gc (lattice

constant variation) and the variables of the six-component

vector J. �G0c is defined in equation (49). �k2
i and �k2

f are

substituted in equation (31) using equations (27) and (28):

�k2
i ¼ �k2

in þ ��kin tan �1 þ y1

1

cos �1

� �2

þ z2
1; ð36Þ

�k2
f ¼ �kf � nfð Þ

2
þ � �kf � nfð Þ tan �2 þ y2

1

cos �2

� �2

þ z2
2:

ð37Þ

Inserting equations (36) and (37) into equation (31) and using

again equation (32) to substitute all �kf � nf terms allows us to

express the total Larmor precession angle as a function of

squared and cross terms of the six variables

ð�!;�kin; y1; y2; z1; z2Þ. The total Larmor phase can conve-

niently be expressed in matrix notation:

�ðki; kfÞ ��0 ¼ �
00
2 TTJ�

1

2
�002 JTWJþ �002 �G � rrr!ðq0Þ

�
1

2
�002 �q0TH0�q0 þ Xð�GÞ: ð38Þ

Here Xð�GÞ denotes all cross terms introduced by sample

imperfections treated in x2.4. The components of the six-

dimensional column vector T and the elements of the

symmetric ð6� 6Þ matrix W are given in Appendices B1 and

B2. For the special case, where the SE conditions are satisfied

and the gradient rrr!ðq0Þ lies in the scattering plane, the

components reduce to

ei1;f1 ¼ 1; ei2;f2 ¼ ei3;f3 ¼ 0; ð39Þ

Ci;f ¼ 1; �002 ¼ �2; �1 ¼ �2: ð40Þ

The matrix W then reduces to the matrix given by Habicht et

al. (2003). Since all elements of T except T1 ¼ �1 are zero, the

first term in equation (38) reduces to the basic expression

�00TTJ ¼ ���!.

2.3. The s dependence of the polarization

As a next step, we combine the SE Larmor phase with the

TAS resolution function, first assuming an idealized sample

with perfect lattice (�G ¼ 0) and a dispersion surface without

curvature (H0 ¼ 0). We allow for a detuning of the instrument,

such that equations (3) and (4) are not satisfied. This will give

us an expression for the polarization versus SE time �
according to equation (1). With these assumptions equation

(38) reduces to

�ðki; kfÞ ��0 ¼ �
00
2 TTJ�

1

2
�002 JTWJ: ð41Þ

The TAS transmission function is described in terms of the

matrix derived by Popovici (1975). In order to have a consis-

tent nomenclature, the calculation of RTAS is summarized in

Appendix A. In terms of the variable vector J we get

RTASðki; kfÞ ¼ exp �
1

2
JTLTASJ

� �
: ð42Þ

Substituting equations (41) and (42) into the fundamental

equation (1) gives

P ¼
1

N

Z
SðQ; !Þ exp i�002 TTJ

� �
exp �

1

2
JTLIJ

� �
d6Jn

with

LI ¼ LTAS þ i�002 W: ð43Þ

We now argue that all terms that are nonlinear in �! can be

neglected in equation (43). The reason is that in SE

measurements the energy width of Sð�!Þ is much narrower

than the energy width of the TAS transmission function RTAS,

and the range of �! is small, such that the integral in equation

(43) is dominated by a term expð�i��!Þ. If both widths were

comparable, it would make more sense to perform TAS scans

to determine Sð!Þ without using SE. Neglecting terms

nonlinear in �!, equation (43) splits into a product of the

resolution function and the Fourier transform of Sð!Þ:
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P ¼
1

N

Z
S Q; !ð Þ exp �i�002 �!ð Þ d�!

�

Z
exp i�002eTTTeJJ	 


exp �
1

2
eJJTeLLI

eJJ� �
d5Jn; ð44Þ

whereeJJ ¼ ð�kin; y1; y2; z1; z2Þ andeTT are the five-dimensional

subvectors of J and T without �!. eLLI is the corresponding

symmetric ð5� 5Þ submatrix of LI. The Gaussian resolution

integral in equation (44) has the following general solution

(Miller, 1964):Z1
�1

exp KTJ
� �

exp �
1

2
JTMJ

� �
dnJn

¼
ð2�Þn=2

ðdet MÞ1=2
exp �

1

2
KTM�1K

� �
: ð45Þ

The second integral in equation (44), the resolution function,

then reads

FIð�
00
2 Þ ¼

deteLLIð�
00
2 ¼ 0Þ

deteLLIð�
00
2 Þ

" #1=2

exp �
1

2
�0022
eTTTeLL�1

I ð�
00
2 Þ
eTT� �������
������:
ð46Þ

The exponential term is unity for a tuned instrument, since in

this caseeTT is zero and FIð�
00
2 Þ then is identical to equation (65)

in the work of Habicht et al. (2003). For strong detuning, this

exponential term will dominate the decay of the polarization.

2.4. Sample mosaic and spread in d spacing

Mosaicity and spread of d spacing of the sample crystal lead

to a variation of the direction and magnitude of the reciprocal-

lattice vector �G ¼ G�G0, where G0 is the mean reciprocal-

lattice vector corresponding to a perfect crystal. This also

leads to a smearing of the effective excitation momentum

�q ¼ Q0 ��G. As a consequence, the SE phase in equation

(38) gets the additional term þ�002 �G � rrr!ðq0Þ. For a quanti-

tative treatment we define the vertical (��) and horizontal

(��) mosaicity and the variation of the magnitude �G:

G ¼ G0 þ�G ¼

ðG0 þ�GÞ cos �� cos ��
ðG0 þ�GÞ cos �� sin ��
ðG0 þ�GÞ sin ��

24 35: ð47Þ

We assume that the variations are small and expand to second

order:

�G ¼
�G� 1

2 G0ð��
2 þ��2Þ

G0��þ�G��
G0��þ�G��

24 35: ð48Þ

Since for phonons the scattering cross section is proportional

to ðQ � nÞ2 where n is the phonon polarization vector, q0 should

ideally be perpendicular and parallel to G0 for the measure-

ment of transverse and longitudinal phonons, respectively.

Equation (48) shows that first-order contributions to the SE

phase are linear in �G for longitudinal and linear in �� for

transverse phonons. For the further calculation we separate

linear and quadratic terms:

�G0c ¼

�G

G0��
G0��

0@ 1A and �G00 ¼
� 1

2 G0ð��
2 þ��2Þ

�G��
�G��

24 35:
ð49Þ

The complex resolution matrix including �G reads

LM ¼ I�1LIIþ NþW ð50Þ

with the nonzero elements of the ð6� 9Þ matrix I

I11 ¼ I22 ¼ I33 ¼ I44 ¼ I55 ¼ I66 ¼ 1; ð51Þ

I17 ¼ Cx; I18 ¼ CyG0; I19 ¼ CzG0; ð52Þ

and with the definition C ¼ rrrq!ðqc0Þ. The nonzero elements

of the ð9� 9Þ matrix N are

N77 ¼
1

�2
S

; N88 ¼
1

�2
S

; N99 ¼
1

�2
S

: ð53Þ

We assume a Gaussian distribution of �G, �� and �� with

related standard deviations �S, �S and �S, respectively. The

quadratic terms are taken into account by the symmetric

ð9� 9Þ matrix W with the following nonzero elements:

W78 ¼ W87 ¼ �i�002 Cy; W79 ¼ W97 ¼ �i�002 Cz; ð54Þ

W88 ¼ þi�002 CxG0c; W99 ¼ þi�002 CxG0c: ð55Þ

Note that equation (54) is the corrected version of equation

(83) in the work of Habicht et al. (2003). The linear terms in

��, �� and �Gc arising from �G0c can be written as

þi�002 TT
g JM, with the column vectors

Tg ¼ ð0; 0; 0; 0; 0; 0;Cx;CyG0c;CzG0cÞ; ð56Þ

JM ¼ ð�!;�kin; y1; y2; z1; z2;�Gc;��;��Þ: ð57Þ

All linear terms can be taken into account by introducing

TM ¼
�1;NI Ci �

�1

�2

Cf

� �
;

NIei2

cos �1

;�
NFef2

cos �2

;

NIei3;�NFef3;Cx;�CyG0c;�CzG0c

264
375: ð58Þ

Analogous to the treatment in the previous subsection, terms

in �! higher than linear are neglected, leading to

P ¼
1

N

Z
SðQ; !Þ expð�i�002 �!Þ d�!

�

Z
expði�002eTTT

M
eJJMÞ exp �

1

2
eJJT

M
eLLM
eJJM

� �
d8Jn; ð59Þ

whereeJJM ¼ ð�kin; y1; y2; z1; z2;�Gc;��;��Þ andeTTM are the

eight-dimensional subvectors of JM and TM, respectively.eLLM is

the corresponding symmetric ð8� 8Þ submatrix of LM. The

second integral is the resolution function. Integration using

equation (45) gives

FMð�
00
2 Þ ¼

deteLLMð�
00
2 ¼ 0Þ

deteLLMð�
00
2 Þ

" #1=2

exp �
1

2
�0022
eTTT

M
eLL�1

M ð�
00
2 Þ
eTTM

� �������
������:
ð60Þ
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2.5. Curvature of the dispersion surface

In this section the influence of the curvature of the disper-

sion surface on the Larmor phase is discussed. The planes of

constant Larmor phase (Fig. 2) are usually tuned to be

tangential to the dispersion surface, but a curvature of the

surface leads to a smearing of the phase. As the dispersion

surface is only visible within the volume of the resolution

ellipsoid, we again use a second-order expansion employing

the Hessian matrix:

Hij ¼
@2

@qi@qj

!ðqÞ i; j ¼ 1; 2; 3: ð61Þ

Within the resolution formalism, the matrix H is expressed in

Cartesian coordinates related to the reciprocal lattice by the B

matrix (Busing & Levy, 1967). If the Hessian matrix is calcu-

lated in reciprocal-lattice coordinates as HHKL with basis

vectors b1 ¼ a?, b2 ¼ b? and b3 ¼ c?, then the transformation

to Cartesian coordinates reads H ¼ BHHKLB�1.

Following Habicht et al. (2003), the modified matrix reads

LC ¼ LI þ i�002 I�1
C H�1

C HHCIC ð62Þ

where the matrix HCIC transforms the Hessian H to the

coordinate space of LI. The matrix HC describes the trans-

formation

�q� ¼ HCY ð63Þ

with the column vector Y ¼ ðx1; y1; z1; x2; y2; z2Þ and its

components defined in equations (8) and (9). The variation of

the wavevector �q� ¼ �ki ��kf is expressed in the basis of

the Cartesian system (i0, j0 and l0). In this coordinate system

the wavevector Q� ¼ ðQ 0 0Þ is parallel to i0 (see Fig. 1). (i0; j0

and l0) are identical to the coordinate system defined as the �
system by Lumsden et al. (2005). In order to express �q� in the

� system, �ki and �kf are rotated into the Q� frame. Using

equations (8) and (9) and the definitions in Fig. 1 gives

�ki ¼ ðx1 cos ’� y1 sin ’Þi0 þ ðx1 sin ’þ y1 cos ’Þj0 þ z1l0;

ð64Þ

�kf ¼ ðx2 cos �� y2 sin �Þi0 þ ðx2 sin �þ y1 cos �Þj0 þ z2l0;

ð65Þ

where ’ is defined as the angle between Q� and ki, and � is

defined as the angle between Q� and kf . Thus, for equation

(63) to hold we obtain

HC ¼

cos ’ � sin ’ 0 � cos � sin � 0

sin ’ cos ’ 0 � sin � � cos � 0

0 0 1 0 0 �1

0@ 1A:
ð66Þ

The definitions of ’ and � are different from those given by

Habicht et al. (2003) and sign errors are corrected. In order to

evaluate the expression �qTH�q, the Hessian H first is

rotated to H�. According to Lumsden et al. (2005) the trans-

form of the vector Q is defined as

Q� ¼ XMNUBQ ð67Þ

and that of the matrix H is

H� ¼ XMNUBHB�1U�1N�1M�1X�1: ð68Þ

Equation (68) is the generalization of the matrix transform

given by equation (91) in the work of Habicht et al. (2003).

In order to evaluate the resolution matrix, the Hessian

needs a further transformation into the variable space of the

six-dimensional vector J. The matrix IC relates Y and J by the

linear transformation

Y ¼ ICJ: ð69Þ

The aim is to obtain a linear relation between the variable

vectors J and Y. We start with the following expression [see

equation (17)]:

�! ¼ NI"""i ��ki � NF"""f ��kf: ð70Þ

Substitution of ki;f and """i;f by using equations (27), (28), (20)

and (21) gives

�! ¼ x1ðNIei1 cos �1 � NIei2 sin �1Þ

þ y1ðNIei1 sin �1 þ NIei2 cos �1Þ þ ei3NIz1

� x2ðNFef1 cos �2 � NFef2 sin �2Þ

� y2ðNFef1 sin �2 � NFef2 cos �2Þ � ef3NFz2 ð71Þ

and

�kin ¼ x1 cos �1 þ y1 sin �1: ð72Þ

According to equation (69) the transformation reads

J ¼ I�1
C Y. The elements of the matrices I�1

C and IC are defined

in Appendices B3 and B4. For tuned SE conditions equations

(39) hold and IC reduces to the matrix given by Habicht et al.

(2003).

With equations (69) and (63) the additional term in the

Larmor phase due to a curved dispersion surface is given by

�qTH�qc ¼ YTH�1
C HHCY

¼ JTI�1
C H�1

C HHCICJ: ð73Þ

The resolution matrix as given in equation (62) can now be

evaluated. The polarization can again be written as a product

of two integrals, where the second one is the resolution

function:

P ¼
1

N

Z
SðQ; !Þ expð�i�002 �!Þ d�!

�

Z
exp i�002eTTTeJJ	 


exp �
1

2
eJJTeLLC

eJJ� �
d5Jn: ð74Þ

Using equation (45) the resolution function taking into

account curvature effects (without including mosaicity and

spread in d spacing) is

FCð�
00
2 Þ ¼

deteLLCð�
00
2 ¼ 0Þ

deteLLCð�
00
2 Þ

" #1=2

exp �
1

2
�0022
eTTTeLL�1

C ð�
00
2 Þ
eTT� �������
������:
ð75Þ
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2.6. Combining mosaicity, spread in d spacing and curvature
of the dispersion surface

The results of the two previous sections can now be

combined. The variation of the reciprocal-lattice vector �G0

[equation (49)] also requires �q to be modified via

�q0 ¼ �q��G0; ð76Þ

which enters the curvature term

�q0TH�q0c ¼ ð�q��G0ÞTHð�q��G0Þ

¼ �qTH�qþ�G0TH�G0

� 2�qTH�G0: ð77Þ

The corresponding matrix for the resolution function is

LMC ¼ ITLCIþ NþW: ð78Þ

The resolution function can be expressed as

FMCð�
00
2 Þ ¼

deteLLMCð�
00
2 ¼ 0Þ

deteLLMCð�
00
2 Þ

" #1=2

exp �
1

2
�0022
eTTT

M
eLL�1

MC �
00
2ð Þ
eTTM

� �������
������:
ð79Þ

This resolution function FMC includes lattice imperfections

(mosaicity, spread of d spacing) and the curvature of the

dispersion surface.

3. Energy detuning

In this section we calculate the effect of detuning both the

TAS resolution ellipsoid and the SE parameters to a ‘wrong’

energy !0TAS, which does not coincide with the actual energy

of the excitation !0S (see Fig. 3). Such a detuning might

happen if the excitation energy is not known with sufficient

precision or if there are multiple excitation branches within

the TAS ellipsoid, so that tuning to all of these branches is not

possible. In this section we assume that we have only one

dispersion branch and that both the centre of the TAS ellip-

soid and the nominal excitation share the same q0.

The shift in energy between the TAS resolution ellipsoid

and the excitation is ��TAS ¼ !0TASðq0Þ � !0Sðq0Þ. We

include this shift by substituting �!! �!���TAS. The

resolution matrix then reads

LMC ¼ ITLCIþ NþW

¼ IT LTAS þ i�002 Wþ i�002 I�1
C H�1

C HHCIC

� �
Iþ NþW:

ð80Þ

Since only the TAS transmission function changes, the

following substitution has to be made:

JTITLTASIJ! JT
TASITLTASIJTAS ð81Þ

with

JTAS ¼ J� J0 ¼ ð�!���TAS;�kin; y1; y2; z1; z2Þ: ð82Þ

The new TAS resolution matrix is defined as LS ¼ ITLTASI.

The matrix LS is symmetric and therefore J0TLSJ ¼ JTLSJ0.

Using this symmetry yields

JT
TASLSJTAS ¼ JTLSJ� 2JTLSJ0 þ J0TLSJ0

¼ JTLSJ� 2��TASðLSÞ1nJ

þ ðLSÞ11��2
TAS ð83Þ

where ðLSÞ1n defines the six-dimensional row vector of the

matrix LS and ðLSÞ11 is the (1, 1) element of the matrix LS. The

term proportional to ðLSÞ11��2
TAS is a constant, which can be

absorbed in the normalization factor N. With

�
1

2
JT

TASLMC;TASJTAS ¼ �
1

2
JTLMCJþ��TASðLSÞ1nJ

�
1

2
ðLSÞ11��2

TAS ð84Þ

the modified expression for the polarization reads

P ¼
1

N

Z
SðQ; !Þ exp �i�002 �!þ��TASðLSÞ11�!

� �
d�!

�

Z
exp eTTT

TAS
eJJ	 


exp �
1

2
eJJTeLLMC

eJJ� �
d5Jn: ð85Þ
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Figure 3
(Left) The lines of constant Larmor phase (here encoded by colours) are in the tuned case parallel to the dispersion surface (black line) and the TAS
resolution ellipsoid is centred on the nominal excitation (q0; !0). (Right) The TAS ellipsoid is offset to (q0; !0TAS) and the lines of constant phase are
detuned.



Here, the definitioneTTTAS ¼ i�002eTTM þ��TASð
eLLSÞ1n ð86Þ

was used. The result for the resolution function, including its

normalization to 1 at � ¼ 0, reads then

FMC;TASð�
00
2 Þ ¼

����� deteLLMCð�
00
2 ¼ 0Þ

deteLLMCð�
00
2 Þ

" #1=2

� exp
1

2
eTTT

TAS
eLL�1

MCð�
00
2 Þ
eTTTAS

� �
� exp �

1

2
eTTT

TASð0ÞeLL�1
MCð�

00
2 ¼ 0ÞeTTTASð0Þ

� ������:
ð87Þ

Since

exp eTTT
TAS
eLL�1

MC
eTTTAS

	 

¼ exp ��0022

eTTT
M
eLL�1

MC
eTTM

	 

� exp þ��2

TASð
eLLSÞ

T
1n
eLL�1

MCð
eLLSÞ1n

h i
� exp þi2�002 ��TAS

eTTM
eLL�1

MCð
eLLSÞ1n

h i
ð88Þ

equation (87) yields

FMC;TASð�
00
2 Þ ¼

����� deteLLMCð�
00
2 ¼ 0Þ

deteLLMCð�
00
2 Þ

" #1=2

� exp
1

2
��2

TASð
eLLSÞ

T
1n
eLL�1

MCð�
00
2 Þð
eLLSÞ1n

� �
� exp �

1

2
��2

TASð
eLLSÞ

T
1n
eLL�1

MCð�
00
2 ¼ 0ÞðeLLSÞ1n

� �
� exp �

1

2
�0022
eTTT

M
eLL�1

MCð�
00
2 Þ
eTTM

� �
� exp i�0022 ��TAS

eTTT
M
eLL�1

MCð�
00
2 Þð
eLLSÞ1n

h i�����: ð89Þ

Note that the phase term arising from

exp �
1

2
eTTT

TASð0ÞeLL�1
MCð�

00
2 ¼ 0ÞeTTTASð0Þ

� �
¼ exp �

1

2
��2

TASð
eLLSÞ

T
1n
eLL�1

MCð�
00
2 ¼ 0ÞðeLLSÞ1n

� �
ð90Þ

can be neglected, since the term is independent of �002 and thus

is absorbed in the normalization factor.

The Fourier transform is no longer as simple as in the

previous subsections, since there is an additional term linear in

�!:R
exp ��TASðLSÞ11�!

� �
Sð�!Þ expð�i�002 �!Þ d�!: ð91Þ

The term exp½��TASðLSÞ11�!� introduces a small asymmetry.

However, in practical cases ��TASðLSÞ11�!� 1. Thus, the

exponential exp½��TASðLSÞ11�!� only varies slowly with �!
and close to 1 over the �! range of the scattering function

Sð�!Þ. Therefore, this factor is neglected.

Fig. 4 shows a numerical example for equation (89) for a

zone boundary magnon in RbMnF3, where an energy detuning

by ��TAS, a crystal rotation angle detuning �A3 and a scat-

tering angle detuning by �A4 are compared. The intrinsic

magnon line width is assumed to be zero. The depolarization

of the blue curve (labelled ‘no detuning’) results from curva-

ture effects. In general, the effect of individually detuned

parameters depends on the dispersion (energy, slope, curva-

ture) and on the TAS configuration. In the case of a zone

boundary excitation as in Fig. 4 with zero slope of the

dispersion, the detuning in energy has the largest effect on the

polarization, whereas detuning in A3 and A4 causes q0 to vary

around the maximum of the dispersion, which only leads to

small additional variations of the energy and the slope, such

that the effect on the polarization is also small.

4. Two dispersion branches

Now we generalize the result of the previous section to the

case of two dispersion branches within the volume of the

resolution ellipsoid. A less general case has already been

treated by Habicht et al. (2010), where, as simplification, the

spectrometer was tuned to one excitation branch and detuned

with respect to the second one. In the following calculation we

allow for tuning to an arbitrary !TAS, which is more realistic

compared with the experiment where the resolution ellipsoid

is centred between the mode energies. We assume the TAS

ellipsoid is centred at ðq0; !0TASÞ, and that the energies of the

two excitation branches at the same q0 are !0S1ðq0Þ and

!0S2ðq0Þ. The general expression for the polarization is given

by

P ¼
1

N

(Z
S1ðQ; !ÞR1ðki; kfÞ exp½i�1ðki; kfÞ� d

3ki d3kf

þ

Z
S2ðQ; !ÞR2ðki; kfÞ exp½i�2ðki; kfÞ� d

3ki d3kf

)
: ð92Þ
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Figure 4
Depolarization effects for RbMnF3 at the zone boundary excitation
Q ¼ ½0:5 0:5 � 1�, h- ! = 8.3 meV, for energy detuned by ��TAS, crystal
rotation angle detuned by �A3 and scattering angle detuned by �A4.
The intrinsic magnon line width is assumed to be zero. The depolarization
of the blue curve (no detuning) results from curvature effects.



Using the results from the previous section P reads

P ¼
1

N

(Z
S1ð�!ÞRTASð�!���1;eJJnÞ

� exp½i�1ð�!;eJJnÞ� d�! d5eJJn

þ

Z
S2ð�!ÞRTASð�!���2;eJJnÞ

� exp½i�2ð�!;eJJnÞ� d�! d5eJJn

)
; ð93Þ

where

��1;2 ¼ !0TAS � !0S1;0S2ðqc0Þ: ð94Þ

The scattering function does not include the energy offsets:

S1;2ð�!Þ ¼ A1;2

�1;2

�2
1;2 þ�!2

: ð95Þ

Substituting the TAS resolution function RTAS in equation

(93), the most general case reads

P ¼
1

N

(Z
S1ð�!Þ exp �i�002;1�!þ��1ðLSÞ11�!

� �
d�!

�

Z
exp eTTT

TAS1
eJJ	 


exp �
1

2
eJJTeLLMC1

eJJ� �
d5Jn

þ

Z
S2ð�!Þ exp �i�002;2�!þ��2ðLSÞ11�!

� �
d�!

�

Z
exp eTTT

TAS2
eJJ	 


exp �
1

2
eJJTeLLMC2

eJJ� �
d5Jn

)
; ð96Þ

where eTTTAS1;2 ¼ i�002;1;2eTTM1;2 þ��1;2ð
eLLSÞ1n: ð97Þ

Generalizing the equation to more than two dispersion

branches is possible in the same way, but is probably not of

practical importance.

We tested this model by re-analysing experimental data on a

zone boundary magnon in RbMnF3 (Habicht et al., 2010). The

crystal consisted of two grains of comparable size and known

relative orientation: one grain was oriented with the (HHL)

plane parallel to the scattering plane, and the second grain was

tilted about 10� out of this plane. The magnon branches of the

two grains are very close at the zone boundary point

Q ¼ ½0:5 0:5 � 1�, E = 8.46 meV, shown in Fig. 5, with a

splitting of 0.4 meV calculated with the UB matrix formalism.

The black line shows equation (96). The only free fitting

parameter was the initial polarization Pð� ¼ 0Þ. The latter

depends on the ratio of spin-flip and non-spin-flip processes,

which also results from the unknown domain populations. [For

isotropic domain populations one would expect

Pð� ¼ 0Þ ¼ 0:5.] Also included in the analysis is the effect of

components of the gradient vector perpendicular to the scat-

tering plane. Despite the large tilt of the second grain, these

perpendicular components are small, as the gradient close to

the zone boundary is also small. The discrepancy between the

simple model ignoring the second mode and equation (96) is

small in this example and only depends on one data point, but

this example shows that the new model properly describes

experimental data. The main feature in the black curve is an

oscillation with a period �� ’ 10 ps, corresponding to the

mode splitting �E ¼ 2�h- =�� ’ 0.4 meV.

Further experimental tests of the generalized resolution

function have already been reported by Groitl et al. (2011).

Here, a well defined model system to generate split excitation

modes with variable splitting was used. The model system

consisted of two Nb crystals both mounted in the (HHL)

scattering plane, where one crystal could be rotated by a piezo

drive around an axis perpendicular to the scattering plane

(corresponding to an A3 rotation).

We first measured the SE amplitude jPj versus � for a

transverse acoustic phonon at Q0 ¼ ½1 1 0:05�, E = 1.14 meV,

using one single crystal. Data were collected at the FLEX

spectrometer with NRSE (Keller et al., 1995; Groitl et al.,

2015), using graphite (002) both as monochromator and

research papers

J. Appl. Cryst. (2018). 51, 818–830 Felix Groitl et al. � Generalized resolution matrix for spin-echo spectrometers 827

Figure 5
Experimental polarization data measured on a split boundary magnon
Q ¼ ½0:5 0:5 � 1�, E = 8.46 meV, T = 3 K, in RbMnF3 at TRISP (Habicht
et al., 2010). The black line shows the calculation according to the general
model [equation (96)]. The simplified model assuming tuning to one
branch (Habicht et al., 2010) is shown as a dashed blue line.

Figure 6
SE data for an acoustic phonon in a single Nb crystal at Q0 ¼ ½1 1 0:05�,
E = 1.144 meV at T = 65 K (Groitl et al., 2011). The simple exponential
decay (red line) fitted with P ¼ expð���Þ gives � = 40 (3) meV. A fit
(black line) with equation (79) taking the curvature of the dispersion into
account gives � = 2 (3) meV, i.e. close to zero, as expected.



analyser, with kI = 1.90 Å�1 (Groitl et al., 2011; Groitl, 2012).

The beam is polarized and analysed by transmission polarizers

upstream of the monochromator and detector. At this small

q = 0.05 reciprocal-lattice units (r.l.u.), corresponding to q =

0.0968 Å�1, the dispersion surface is strongly curved

(	500 meV Å2) and significantly deviates from the planes of

constant Larmor phase even for tuned SE parameters. The

curvature induces a strong decay of jPj, which can be misin-

terpreted as intrinsic line width, as a fit with a simple expo-

nential expð���Þ gives a line width � = 40 (3) meV (red

dashed line in Fig. 6). The data were taken at a relatively low

T = 65 K, where we expect an intrinsic phonon line width close

to zero. A better fit using the resolution model, i.e. equation

(79), requires us to model the dispersion surface locally

around q0 to calculate the elements of the curvature matrix

H0. We used the so-called DAF model (deLaunay, 1956) to

parametrize the phonon dispersion of Nb. The result of a fit

using equation (79) is shown as a black line in Fig. 6. The

resulting line width � = 2 (3) meV is, as expected, close to zero.

In order to test the resolution formalism for a mode doublet

[equation (96)], we added the second Nb crystal on the above-

mentioned sample holder and rotated it by 0.5� in the scat-

tering plane with respect to the first one (corresponding to a

rotation in A3). This corresponds to an offset in L by

0.012 r.l.u. and an energy splitting of 0.29 meV. This offset in q

also induces components of the gradient vector perpendicular

to the scattering plane, which were included in the analysis.

The SE data in Fig. 7 show lower polarization than for the

single crystal and a pronounced oscillation, where the modu-

lation depth is given by the phonon intensities of the two

crystals. For an analysis with the split mode resolution function

[equation (96)] we used the same curvature matrix H0 as for

the single dispersion in Fig. 6. As the NRSE setup at FLEX did

not allow data collection at � < 6 ps, it proved difficult to fit �
and �� simultaneously. By assuming � ¼ 0, as obtained for

the single crystal, we get �! = 0.27 (3) meV, in agreement

with the calculated value.

5. Conclusion

The resolution model for SE-TASs developed here includes

detuning effects and dispersion surfaces with components

perpendicular to the scattering plane. The formalism works for

arbitrary crystal symmetries. Curvature of the dispersion can

be easily calculated in reciprocal-lattice units. These general-

izations give more flexibility in the planning of experiments

and data analysis. The compact matrix formalism allows for an

easy numerical implementation.

APPENDIX A
TAS transmission function in matrix notation

The standard approximation of the resolution function for a

conventional TAS has been derived (Cooper & Nathans, 1967)

[corrections (Dorner, 1972)] and reformulated in a covariant

matrix formalism (Stoica, 1975). The formalism has been

extended (Popovici, 1975) to include real-space effects, such as

finite spatial dimensions of the optical elements and the

sample. Explicitly, the TAS resolution function reads (Popo-

vici, 1975)

RTASðXÞ ¼
R0

ð2�Þ2
ðdet MTASÞ

1=2 exp �
1

2
XTMTASX

� �
ð98Þ

with the four-component column vector

X ¼ ðX1;X2;X3;X4Þ ¼ ½Q�Q0; !ðqÞ � !0ðq0Þ�. Note that

X4 is the fourth component of the vector X and the quantity

�! ¼ !ðqÞ � !0ðqÞ used in the calculations of the Larmor

phase in NRSE experiments is different and refers to energy

deviations from the dispersion surface for a given wavevector

q. ½R0=ð2�Þ
2
�ðdet MTASÞ

1=2 is a normalization factor and R0 is

given in equation (16) in the work of Popovici (1975).

Following Popovici the resolution matrix is given by

M�1
TAS ¼ BA DðSþ TTFTÞ�1DT

� ��1
þG

n o�1

ATBT; ð99Þ

where G�1 is the covariance matrix of the distribution of the

angular variables and F�1 is the covariance matrix of the

reflectivity function. The matrices A, D, S, T and G are defined

as in Appendices I and II in the work of Popovici (1975). The

linearized relation

X ¼ BY ð100Þ

holds, with the six-component column vector Y ¼ ð�ki;�kfÞ

(see x2.5). In order to express the exponent of the resolution

function as a function of the six-component column vector

J ¼ ð�!;�kin; y1; y2; z1; z2Þ, equation (69) is used with the

6 � 6 matrix IC as defined in Appendix B3. Therefore, equa-

tion (99) can be reformulated, yielding for the TAS resolution

matrix in the frame of J:

LTAS ¼ I�1
C A DðSþ TTFTÞ�1DT

� ��1
þG

n o�1

AT
ðI�1

C Þ
T

� ��1

:

ð101Þ
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Figure 7
SE data on a model split mode generated by two mutually misaligned Nb
crystals at Q0 ¼ ½1 1 0:05� with a splitting �L = 0.012 r.l.u. and
corresponding �� = 0.29 meV (Groitl et al., 2011). The black line shows
a fit with the generalized resolution function [equation (96)]. The blue
line shows for comparison the fit with equation (79) from Fig. 6.



APPENDIX B
Matrix elements

B1. T vector

The components of the six-dimensional column vector T

introduced in equation (38) are

T1 ¼ �1; T2 ¼ NI Ci �
�1

�2

Cf

� �
; T3 ¼

NIei2

cos �1

;

T4 ¼ �
NFef2

cos �2

; T5 ¼ NIei3; T6 ¼ �NFef3: ð102Þ

B2. The W matrix

The nonzero elements of the symmetric 6 � 6 matrix W in

equation (38) are

	11 ¼ �
2D2

C2
f N2

F�
00
2

; ð103Þ

	22 ¼ �
h-

m
�

h-

m
tan2 �1 � 2

�1

�002

NI

kI � ni

� 2
D2

�002

C2
i N2

I

C2
f N2

F

; ð104Þ

	33 ¼ �
h-

m

1

cos2 �1

� 2
D2

�002

e2
i2N2

I

C2
f N2

F

1

cos2 �1

; ð105Þ

	44 ¼
h-

m

1

cos2 �2

þ 2
h-

m

tan �2

cos2 �2

1

Cf

ef2 � 2
D2

�002

e2
f2

C2
f

1

cos2 �2

; ð106Þ

	55 ¼ �
h-

m
� 2

D2

�002

e2
i3N2

I

C2
f N2

F

; ð107Þ

	66 ¼
h-

m
� 2

D2

�002

e2
f3

C2
f

; ð108Þ

	12 ¼ 2
D2

�002

CiNI

C2
f N2

F

; ð109Þ

	13 ¼ 2
D2

�002

ei2NI

C2
f N2

F

1

cos �1

; ð110Þ

	14 ¼ �2
D2

�002

ef2

C2
f NF

1

cos �2

þ
h-

m

tan �2

cos �2

1

CfNF

; ð111Þ

	15 ¼ 2
D2

�002

ei3NI

C2
f N2

F

; ð112Þ

	16 ¼ �2
D2

�002

ef3

NFC2
f

; ð113Þ

	23 ¼
h-

m

tan �1

cos �1

� 2
D2

�002

CiN
2
I

C2
f N2

F

ei2

1

cos �1

; ð114Þ

	24 ¼ �
h-

m

tan �2

cos �2

CiNI

CfNF

þ 2
D2

�002

CiNI

C2
f NF

ef2

1

cos �2

; ð115Þ

	25 ¼ �2
D2

�002

CiN
2
I

C2
f N2

F

ei3; ð116Þ

	26 ¼ 2
D2

�002

CiNI

C2
f NF

ef3; ð117Þ

	34 ¼ 2
D2

�002

ei2ef2NI

C2
f NF

1

cos �1 cos �2

�
h-

m

tan �2

cos �2 cos �1

NI

CfNF

ei2;

ð118Þ

	35 ¼ 0; ð119Þ

	36 ¼ �2
D2

�002

ei2ei3N2
I

C2
f N2

F

1

cos �1

þ 2
D2

�002

ei2ef3NI

C2
f NF

1

cos �1

; ð120Þ

	45 ¼ 2
D2

�002

ef2ei3NI

C2
f NF

1

cos �2

�
h-

m

tan �2

cos �2

1

Cf

NI

NF

ei3; ð121Þ

	46 ¼ �2
D2

�002

ef2ef3

C2
f

1

cos �2

þ
h-

m

tan �2

cos �2

1

Cf

ef3; ð122Þ

	56 ¼ 2
D2

�002

ei3ef 3NI

C2
f NF

; ð123Þ

with

D2 ¼ ��2

NF

kF � nf

�
h-

2m
�002 �

h-

2m
�002 tan2 �2

� �
: ð124Þ

B3. The IC matrix

The nonzero elements of the 6 � 6 matrix IC in equation

(73) are

IC;12 ¼
1

cos �1

; ð125Þ

IC;13 ¼ � tan �1; ð126Þ

IC;41 ¼ �
1

NFef2 sin �2 þ NFef1 cos �2

; ð127Þ

IC;42 ¼ �
ei2NI sin �1 � ei1NI cos �1

ef1NF cos �1 cos �2 þ ef2NF cos �1 sin �2

; ð128Þ

IC;43 ¼
ei2NI cos2 �1 þ ei2NI sin2 �1

ef1NF cos �1 cos �2 þ ef2NF cos �1 sin �2

; ð129Þ

IC;44 ¼ �
ef1 sin �2 � ef2 cos �2

ef1 cos �2 þ ef2 sin �2

; ð130Þ

IC;45 ¼
NIei3

ef2NF sin �2 þ ef1NF cos �2

; ð131Þ

IC;46 ¼
ef3

ef1 cos �2 þ ef2 sin �2

; ð132Þ

IC;23 ¼ IC;35 ¼ IC;54 ¼ IC;66 ¼ 1: ð133Þ
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B4. The IC
�1 matrix

The nonzero elements of the 6 � 6 matrix I�1
C in equation

(73) are

I�1
C;11 ¼ NI ei1 cos �1 � ei2 sin �1ð Þ; ð134Þ

I�1
C;12 ¼ NI ei1 sin �1 þ ei2 cos �1ð Þ; ð135Þ

I�1
C;13 ¼ ei3NI; ð136Þ

I�1
C;14 ¼ �NF ef1 cos �2 þ ef2 sin �2ð Þ; ð137Þ

I�1
C;15 ¼ �NF ef1 sin �2 � ef2 cos �2ð Þ; ð138Þ

I�1
C;16 ¼ �ef3NF; ð139Þ

I�1
C;21 ¼ cos �1; ð140Þ

I�1
C;22 ¼ sin �1; ð141Þ

I�1
C;32 ¼ I�1

C;45 ¼ I�1
C;53 ¼ I�1

C;66 ¼ 1: ð142Þ
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