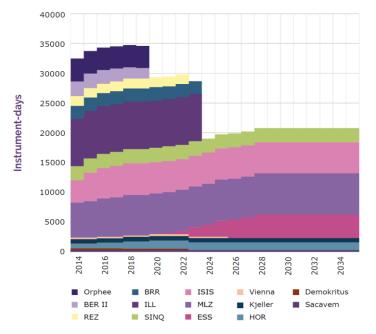


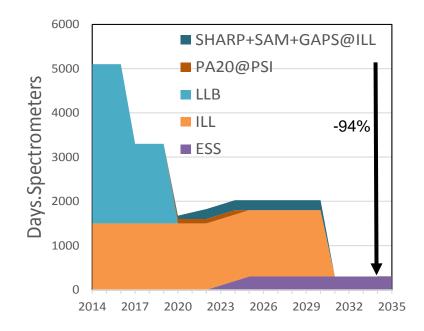
www.cea.fr

Laboratoire Léon Brillouin CEA/CNRS IRFU, CEA Université Paris-Saclay CEA Saclay 91191 Gif-sur-Yvette France


CONTEXTE

Years 2000: Golden Age in Europe

>30000 Instrument. Days for a community of 6000-8000 users


Neutrons in Europe

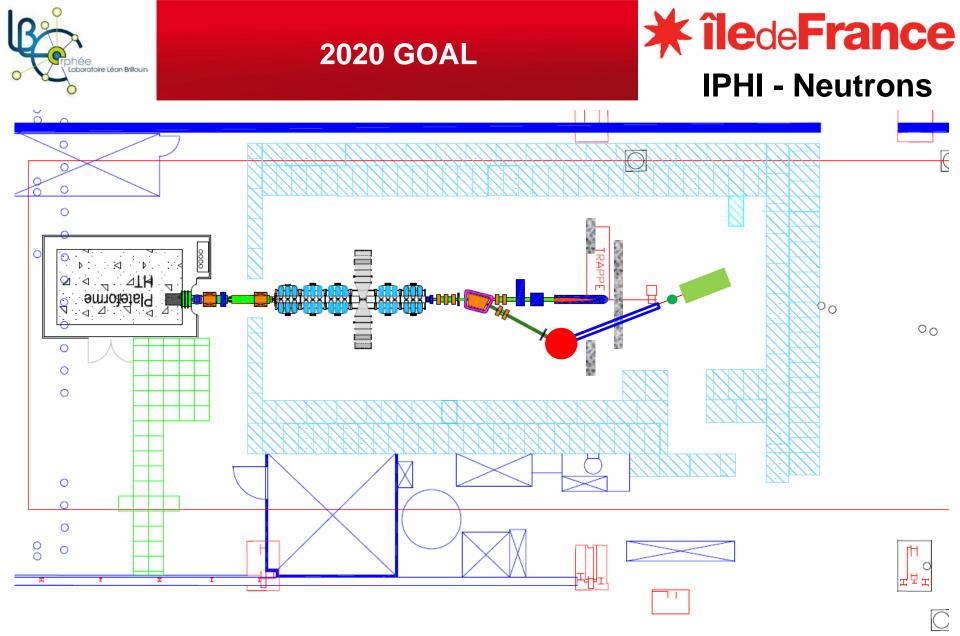
(baseline ERFRI scenario)

ESFRI Report, Neutron scattering facilities in Europe, Present status and future perspectives, 2017

in France

The IPHI – Neutrons demonstrator

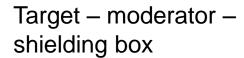
Objective:

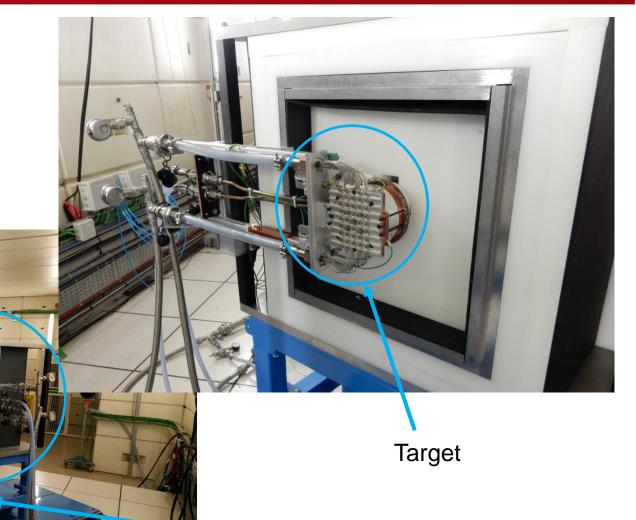

\rightarrow Test the different key elements of a compact source

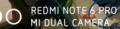
- Accelerator
 - $I_{peak} > 60 mA$
 - Lifetime ~1000 2000 hours (at 50kW)
- Moderator
- Produce thermal and cold neutrons
- Instruments

Target

- 2018-2020
- Operation at 50kW ($E_p = 3MeV$) on a beryllium target
- A "generic" scattering instrument




1 « generic » instrument : SANS, réflectomètre, imagerie, diffraction Measurements on samples – prrof of concept - performances


TARGET - MODERATOR – SHIELDING

12 11:

TMR mounted on 2 trolleys for an « easy opening »

TARGET TESTS SPRING 2019

Operation at 3kW power on the target

- $E_p = 3$ MeV, peak current 20mA, pulse length 2850µs, frequency 17Hz
- Average power density on the target 650W/cm² (in the center of the target)
- Peak power in a pulse = 60kW
- Operation at high temperature (500°C) to promote the diffusion of implanted protons

Mai – June 2019

\rightarrow Operation for more than 50 hours at 3kW (over ~2 weeks)

- Average proton current = 0.9mA
- Proton fluence on the target ~ 50mA.heures ~ 8x10²⁰ protons/m²
- On-line optical control of the target state
 - No visible change of the surface roughness
- 8-9 hours operation per day

« RADIOGRAPHY » SETUP

RADIOGRAPHY SETUP

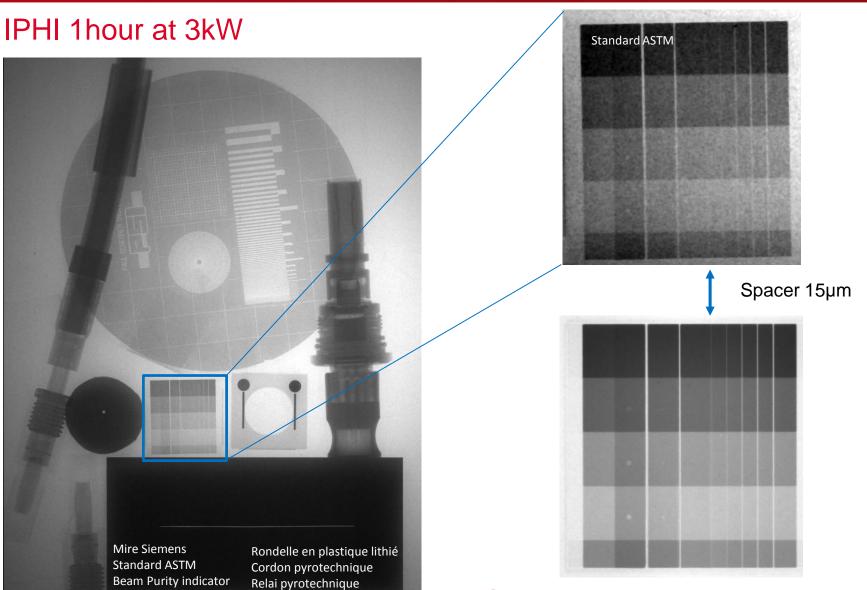


Image Plate mounted behind a lead shield

Fente 200µm dans Cd

G45 « standard conditions » (P = 14MW)

UPGRADES FOR RADIOGRAPHY

Short term (2020) Gain Use of the MCP detectors Gain in detection efficiency 5 Gain in spatial resolution Use of a cold source 2 Beam power increased from 3kW to 50 kW 10 Some losses in engineering design (x0.6) Average current of 17mA \rightarrow from 1 hour to 36 seconds or better statistics Long term (SONATE) Increase of the proton energy to 20 MeV 15 Neutron yield per proton (x200) Some engineering trade-offs (x0.6) Neutrons more difficult to moderate (x0.8)

 Proton current has to be decreased to 2.5mA to remain in the 50kW enveloppe (x0.15)

TOTAL \rightarrow from 1 hour to 2s or better statistics

x 1500

Cea

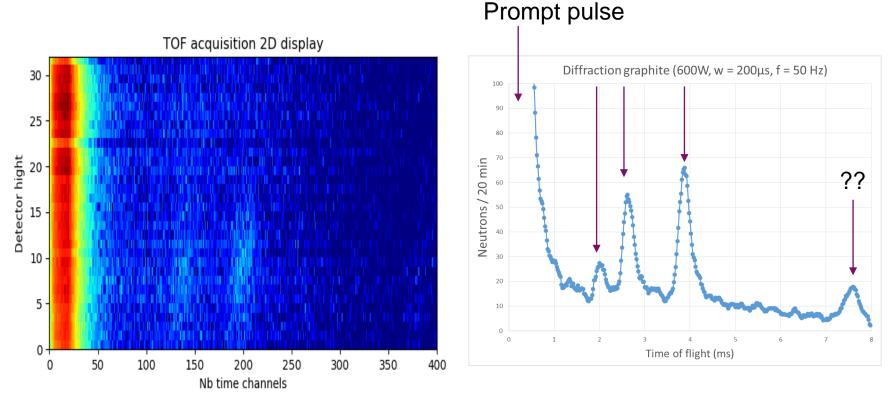
Crystal in 4

circles craddle

REDMI NOTE 6 PRO MI DUAL CAMERA

DIFFRACTION SETUP

Detector MT32 (30x30cm) d E


Source

1

DIFFRACTION

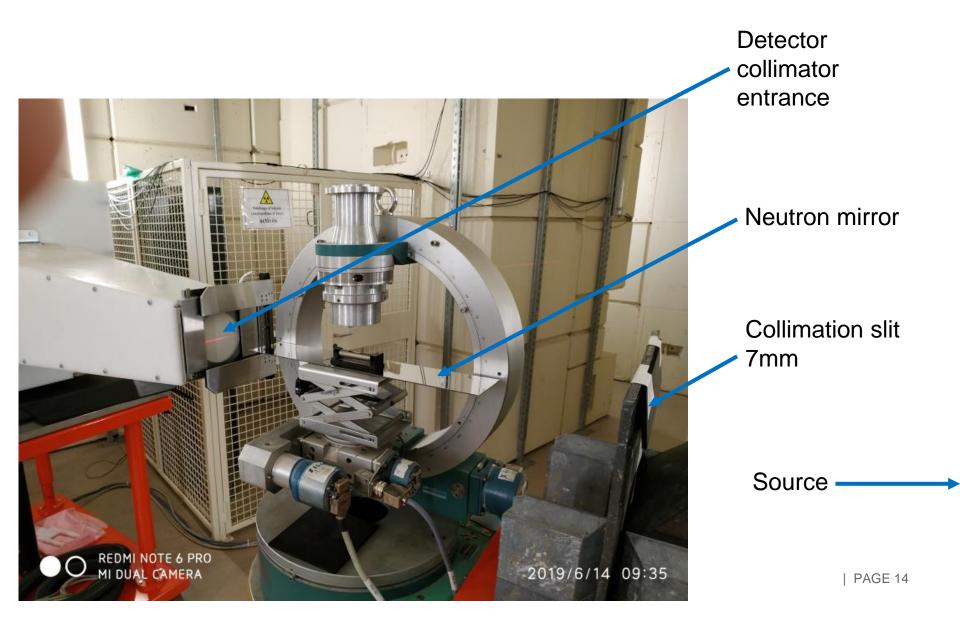
Detector MT32 (32 tubes of 300mm) at 90° from the beam axis

- graphite crystal no collimation
- 50Hz, 200µs, 600W, 20 min
 - Poor efficiency of the MT32 detector for thermal neutrons

Raw data

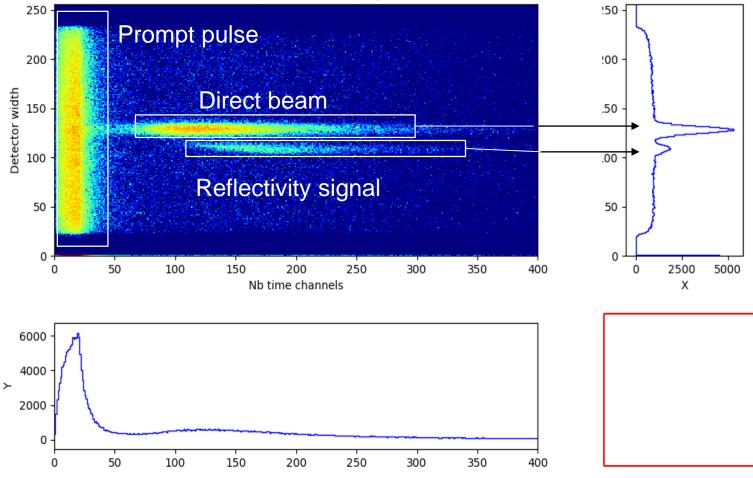
UPGRADES FOR DIFFRACTION

Short term (2020)	Gain
 Use of the 7C2 detector (256 tubes@20 bars) Detection surface increased from [0.028 sr] to [0.8 sr] (Efficiency is not proportionnal to detector surface though) Efficiency increase % MT32 (very Low efficiency of the MT32 detector for thermal neutrons) Use of a neutron guide from moderator to sample (6m) Beam power increased from 3kW to 50 kW Not possible to increase the duty cycle to keep acceptable resolution 	(28) 8 2 1
Medium term (2021)	
 Use of a statistical chopper Allow using a longer duty cycle while improving the resolution Beam power increased from 0.6W to 50 kW Some losses in engineering design (x0.6) Possible to achieve good resolution (1%) on a semi-continuous source 	50
Long term (SONATE)	
 Increase of the proton energy to 20 MeV Neutron yield per proton (x200) Some engineering trade-offs (x0.6) Neutrons more difficult to moderate (x0.8) Proton current has to be decreased to 2.5mA to remain in the 50kW enveloppe (x0.15) 	15
TOTAL	x 3


Other possible gains: Neutron reflector (x1.7)

The G61 detector set in a vertical position could be used for strain scanning

x 3.10⁵


REFLECTIVITY SETUP

Neutron super-miror

Operation à 50Hz, 400µs, 1.2kW, 10 min

Short term (2020)

- Set-up a 50x50cm² detector with a 1cm resolution
 - derived from the 7C2 detector
- Use of a neutron guide from moderator to sample (4m)
- Implement Cold neutrons
 - Otherwise SANS is simply impossible to perform

Medium term

- Multibeam collimation (x4-7)
 - Copy RANS
- Possibility to use thermal neutrons
 - A higher resolution detector would be needed (Bidim26?)

UPGRADES FOR REFLECTIVITY

Short term (2020)	Gain
 Use of the 7C2 detector (256 tubes@20 bars) Detection surface increased from (0.028 sr) to (0.8 sr) Efficiency increased % MT32 	1 8
 Use of a neutron guide from moderator to sample (6m) Beam power increased from 3kW to 50 kW Not possible to increase the duty cycle to keep acceptable resolution 	2 1
 Measuring time increased by a factor 20 (3 hours) Use of a cold source Possiblity to measure smaller samples / better resolution Broader Q-range 	20 2
→ Gain	x600

Medium term (2021) (?)

Long term (SONATE)

- Increase of the proton energy to 20 MeV
 - Neutron yield per proton (x200)
 - Some engineering trade-offs (x0.6)
 - Neutrons more difficult to moderate (x0.8)

TOTAL

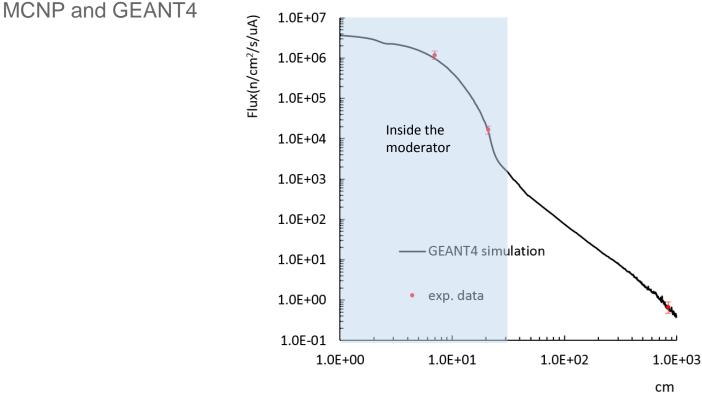
Achievable dynamic range ~ 2.10⁻⁶ (in 3 hours) Eventually background limited Other possible gains: Neutron reflector (x1.7) ESTIA design 100

x 6.10⁴

WORKPLAN 2019 - 2020

Fall 2019

- Ramping of the accelerator to 50 kW
- Design of the 50kW target (scaling of the 3kW target design + beam sweeping)
- New thermal PSD detector
- Powder diffraction + (SANS)
- Other tests on ESS devices (monitors, detectors)

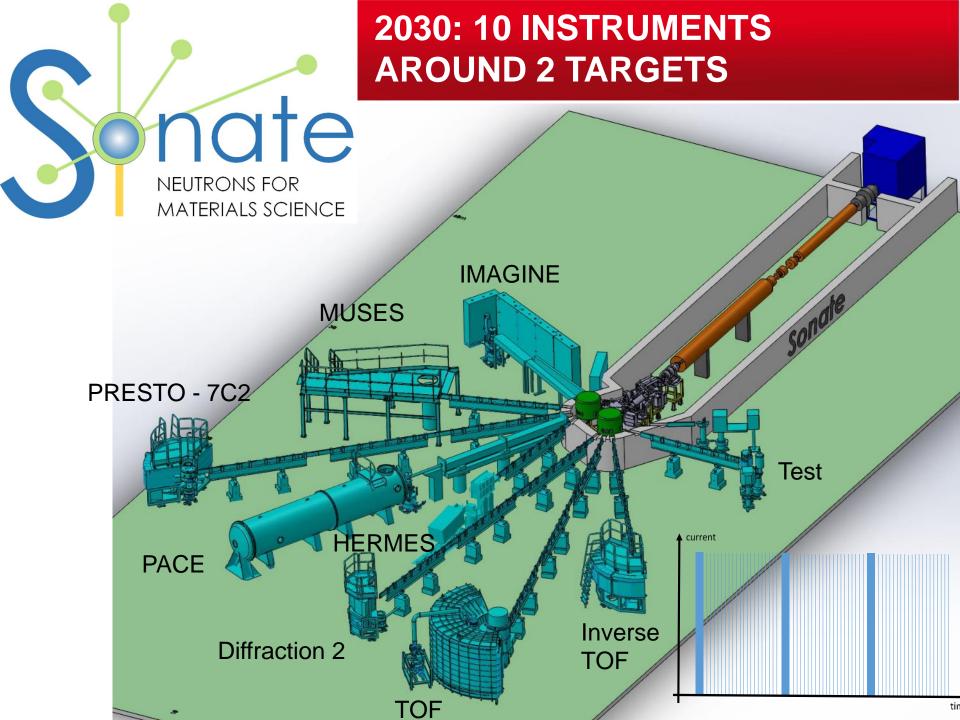

Winter 2020

- Shielding improvements
- Scattering spectrometer improvements
 - Neutron guide
 - Collimation slits
 - Tests target 50 kW
 - Tests cold moderator (para H_2)

Spring 2020

- Operation [Radiography Reflectometry Diffraction SANS]
- Signal / noise improvements
- **CANS Performances Qualifications** \rightarrow **extrapolation for SONATE** (E_p = 20MeV, flux × 200)

Numerical simulations of the neutron production on a CANS


Definition of a reference design \rightarrow SONATE

 $E_p = 20 \text{ MeV}, I_{peak} = 100 \text{ mA}, \text{ duty cycle} = 4\%, P = 80 \text{ kW}$

Reference design SONATE

 $E_p = 20 \text{ MeV}, I_{peak} = 100 \text{ mA}, \text{ duty cycle} = 4\%, P = 80 \text{ kW}$

CONCLUSIONS

The performances of a compact source are potentially equivalent to a medium scale research reactor or spallation source

Reduced cost compared to a reactor

Technologically

- Accelerator OK
 - \rightarrow tests under way (+ other solutions under dev.)
- Moderator C

Cible

- OK / can be updated over the time
- Instruments OK

Possibility to benefit from the French ecosystem

- Scientific and technical expertise at Saclay and Grenoble
- Wide user base
- Possibility to reuse the efforts injected into ESS
 - Accelerator construction
 - Instruments designs
 - Detector developments
 - Reduction et data processing
- Existing instrumentation / available

A CANS for a materials science plateform

Cea

IPHI – NEUTRONS & SONATE CONTRIBUTORS

Monte-Carlo simulations

- H.N. Tran (IRFU/SPhN) (post-doc)
- L. Thulliez (IRFU/SPhN)
- A. Marchix (IRFU/SPhN)
- A. Letourneau (IRFU/SPhN)
- J. Darpentigny (IRAMIS/LLB)
- G. Gigante CEA/SPR (shielding / activation)

IPHI

- J. Schwindling (IRFU/SACM)
- N. Chauvin (IRFU/SACM)
- F. Sénée
- B. Pottin, G. Perreu
- A. Dubois
- D. Chirpaz, Y. Sauce
- O. Kuster, C. Deberles

Instruments simulations

- X. Fabrèges (IRAMIS/LLB)
- A. Menelle (IRAMIS/LLB)
- F. Ott (IRAMIS/LLB)
- F. Porcher (IRAMIS/LLB)

Target - moderator

- N. Sellami (IRFU/SIS)
- B. Annighöfer (IRAMIS/LLB)
- P. Permingeat (IRAMIS/LLB)

Neutron measurements

- J. Darpentigny (IRAMIS/LLB)
- F. Ott (IRAMIS/LLB)
- A. Menelle (IRAMIS/LLB)

Technical support

- K. Jiguet (IRAMIS/LLB)
- W. Josse (IRAMIS/LLB)
- F. Gibert (IRAMIS/LLB)
- B. Homatter (IRAMIS/LLB)
- P. Lavie (IRAMIS/LLB)
- J.-L. Meuriot (IRAMIS/LLB)
- F. Prunes (IRAMIS/LLB)
- G. Exil, R. Lautié, E. Jorgji

Strategic support

- C. Alba-Simionesco (IRAMIS/LLB)
- R. Duperrier (IRFU/SACM)
- A. Leservot (DRF/DCEPI)