# IPHI, a high intensity proton accelerator for neutron production

UCANS VIII, Paris, France.

N. Chauvin<sup>\*</sup>, on behalf of the IRFU and LLB teams.

\*Nicolas.Chauvin@cea.fr

CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.







July 8, 2019

## Overview



## The IPHI Facility, a High Intensity Proton Injector

- IPHI Overview
- SILHI Ion Source
- LEBT
- RFQ
- MEBT

## 2 IPHI Commissioning

- RFQ Commissioning
- Beam Commissioning
- Next steps for IPHI

## 8 Neutron Production Experiments with IPHI

- Neutron Production Experiments Runs 1 & 2
- Neutron Production Experiments Run 3
- Future Experiments: Toward 50 kW on Target
- **5** Conclusions and Perspectives

## IPHI for neutrons

#### **IPHI Facility**

Overview

Ion Source

RFO

MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

#### Neutron Experiments

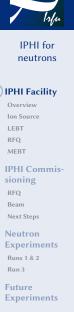
Runs 1 & 2

Run 3

Future Experiments

## Overview




- IPHI Overview
- SILHI Ion Source
- LEBT
- RFQ
- MEBT

### 2 IPHI Commissioning

3 Neutron Production Experiments with IPHI

Future Experiments: Toward 50 kW on Target

**5** Conclusions and Perspectives



2

### IPHI Initial Goals A demonstrator of a 100 mA CW proton injector

- Isla

- Development and validation of beam dynamics codes
- Beam characterisation for future high power accelerators
- Development and tests of beam diagnostics that can be used in the future high intensity accelerators
- Reliability tests and fast re-starting procedures
- Increase the laboratory competences in high intensity/high power accelerator commissioning, tuning and operation



## IPHI for neutrons

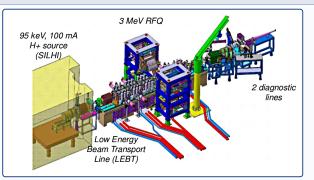
#### **IPHI Facility**

#### Overview

- Ion Source
- LEBT
- RFO
- MEBT

#### IPHI Commissioning RFQ Beam

Next Steps


#### Neutron Experiments

- Runs 1 & 2
- Run 3
- Future Experiments
- Conclusion

## **IPHI Main Parameters**

### **Main parameters**

- ECR ion source and LEBT: 100 mA, 95 keV, pulsed or cw
- 4-vanes RFQ: 100 mA, 3 MeV, 352 MHz
- Power sources: 2 klystrons of more than 1 MW
- 2 beam lines: straight line with beam dump and a deflected line with dipole magnet.





## IPHI for neutrons

#### **IPHI Facility**

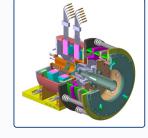
#### Overview

- Ion Source
- LEBT
- RFQ
- MEBT

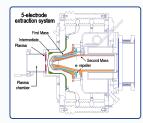
#### IPHI Commissioning RFQ

- Beam
- Next Steps

#### Neutron Experiments


- Runs 1 & 2
- Run 3

#### Future Experiments


## Light Ion Production

## SILHI Ion Source Main Parameters

- Developed in Saclay since 1994
- 2.45 GHz ECR ion sources
- Particles: H<sup>+</sup>, D<sup>+</sup>, He<sup>+</sup>.
- Pulsed to c.w. beam
- Designed for 100 mA H<sup>+</sup> pulsed or c.w.
- A "low current" version (SILHI 2, ≈ 50 mA) is commercially available (www.pantechnik.com)



### 2.45 GHz SILHI ion source





## IPHI for neutrons

#### **IPHI Facility**

Overview

- Ion Source
- LEBT
- RFQ
- MEBT

#### IPHI Commissioning RFO

Beam

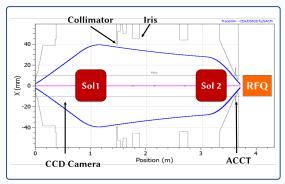
beam .....

Next Steps

#### Neutron Experiments

Runs 1 & 2

Run 3


Future Experiments

## Low Energy Beam Transport (LEBT) Line

Pola

The role of a LEBT is to **transport and adapt** the beam to **optimize** its injection into the RFQ.

- Dual solenoid focusing scheme
- Sterrers to correct beam misalignment
- Beam diagnostics (DCCT, ACCT, Faraday Cup, CCD Camera)
- Iris to control/limit beam size and intensity





### IPHI for neutrons

### **IPHI Facility**

Overview

Ion Source

LEBT RFQ

6

MEBT

#### IPHI Commissioning

- RFQ
- Beam

Next Steps

#### Neutron Experiments

Runs 1 & 2

Run 3

#### Future Experiments

## **IPHI** 4-Vanes **RFQ**



| Parameter             | Value |
|-----------------------|-------|
| Particle              | $H^+$ |
| Max. Current [mA]     | 100   |
| Frequency [MHz]       | 352   |
| Input Energy [keV/u]  | 95    |
| Output Energy [MeV/u] | 3     |
| RFQ length [m]        | 6     |
| Duty Cycle [%]        | cw    |

- R&D program for high intensity beams (CEA/CNRS/CERN)
- Segmented in 6 sections
- Mech. tolerances  $\pm$  30  $\mu$ m
- Commissioned in 2016 in pulsed mode





## IPHI for neutrons

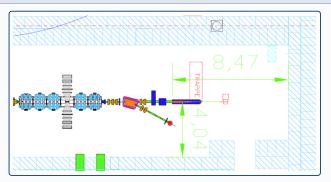
#### **IPHI Facility**

Overview Ion Source LEBT RFQ MEBT

7

IPHI Commissioning RFQ Beam Next Steps

Neutron Experiments


Runs 1 & 2 Run 3

Future Experiments

## Medium Energy Beam Transport (MEBT) Line

### Medium energy beam lines

- RFQ output section 1: 3 quadrupoles
- Dipole magnet 28.5°
- Straight section: 2 quadrupoles and 300 kW beam dump
- Deflected line: 2 quadrupoles and low power beam stopper (several kW)





## Overview

## The IPHI Facility, a High Intensity Proton Injector

### IPHI Commissioning

- RFQ Commissioning
- Beam Commissioning
- Next steps for IPHI

### **3** Neutron Production Experiments with IPHI

- Future Experiments: Toward 50 kW on Target
- Conclusions and Perspectives



Conclusion



IPHI for neutrons

IPHI Facility Overview Ion Source LEBT RFQ MEBT IPHI Commissioning RFQ Beam

9

## **IPHI RFQ Commissioning**

### **RF Conditioning**

- Conditioning started in April 2015 limited by the cooling system of the RFQ (duty cycle limited to 1%).
- After technical issues, conditioning restarted in February 2016 until 1.2 MW peak with a duty cycle of 0.5%.
- April 2016, first beam accelerated: Intensity = 60 mA at 0.4% duty cycle.
- Mid-2018 nominal voltage reached at 5% duty cycle (R.F. pulses:3.6 ms 14 Hz.
- End 2018: RF platform upgrade (pulsed klystron, installation / test a new CW klystron), RFQ cooling system upgrade.
- Mid-2019: RF tuners have been replaced.





## IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source LEBT RFQ MEBT

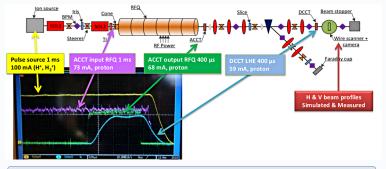
#### IPHI Commissioning

) RFQ

Beam

Next Steps

Neutron Experiments


Runs 1 & 2 Run 3

Future Experiments

## April 2016: First Beam Accelerated



IPHI for neutrons



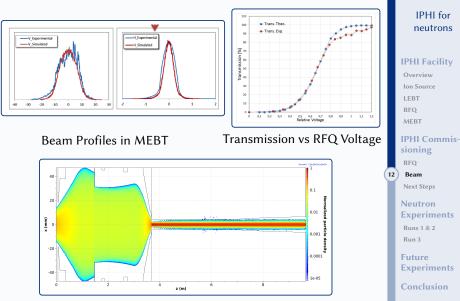
### **Results obtained**

- Transmission through the RFQ in 2016: 93% Now: 96%.
- Accelerated beam in 2016: Intensity = 60 mA at 0.4% duty cycle.
- Output beam energy (3 MeV) was checked with dipole magnetic field.
- October 2018: beam power of 7 kW was accelerated.

IPHI Facility Overview Ion Source LEBT RFQ MEBT IPHI Commissioning RFQ Beam Next Steps

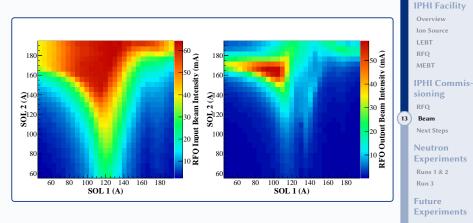
Neutron Experiments

Runs 1 & 2


Run 3

11

Future Experiments


## Beam Commissioning Experimental Results and Comparison to Simulations





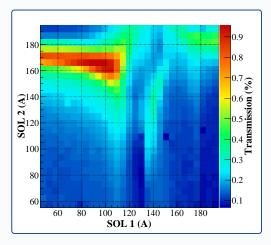
### Beam Commissioning RFQ Transmission vs LEBT Solenoids Tuning

- Source duty cycle: 5 % (Total extracted current  $\approx$  100 mA)
- RFQ duty cycle: 0.1% (100 µs at 1 Hz)



ACCT end of LEBT

ACCT after the RFQ




IPHI for

neutrons

### Beam Commissioning RFQ Transmission vs LEBT Solenoids Tuning

- Source duty cycle: 5 % (Total extracted current  $\approx$  100 mA)
- RFQ duty cycle: 0.1% (100  $\mu s$  at 1 Hz)



- Maximal transmission > 96
   %
- Beam dynamics analysis is currently performed.



IPHI for

neutrons

IPHI Facility Overview

Ion Source

LEBT

 I
 IPHI Commissioning

 ssion > 96
 RFQ

 13
 Beam

Next Steps

Neutron Experiments

Runs 1 & 2 Run 3

Future Experiments

## **IPHI: Next Steps**

- Conditioning to reach nominal voltage at 30% duty cycle (and above ?).
- Accelerate beam at 30% duty cycle.
- Trans National Access to IPHI (or to the 352 MHz RF power amplifiers) is foreseen in the ARIES project framework: 12 x 3 weeks in the mid-2017 mid-2021 period.
- Experiments on IPHI should be discussed **in advance** (technical feasibility, radioprotection issues, responsibility for activated parts...)





IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source LEBT RFQ

MEBT

IPHI Commissioning RFO

RFQ

Beam

14

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

Future Experiments

## Overview



## The IPHI Facility, a High Intensity Proton Injector

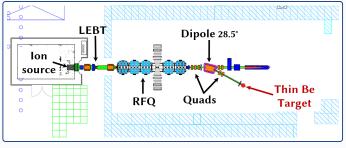
## 2 IPHI Commissioning

8 Neutron Production Experiments with IPHI

- Neutron Production Experiments Runs 1 & 2
- Neutron Production Experiments Run 3

### Future Experiments: Toward 50 kW on Target

Conclusions and Perspectives




## **Neutron Production Experiments Runs 1**

& 2 Experimental Conditions

### **Experimental Conditions**

- Proton Beam: 3 MeV, 1 Hz, 100 µs, 10 mA to 50 mA
- Thin Be target with polyethylene moderator
- Experiment on IPHI deflected beam line
- Run 1: July 2017 Run 2: January 2018



Run 1 & 2 Experimental Setup



## IPHI for neutrons

### **IPHI Facility**

Overview Ion Source LEBT

RFQ

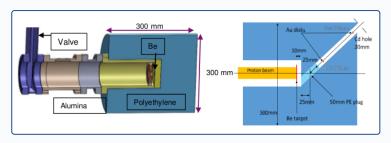
MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

Neutron Experiments

Runs 1 & 2 Run 3


16

Future Experiments

## Neutron Production Experiment – Run 1 Experimental Setup



IPHI for neutrons





### Au foils

- Gamma detectors
- At 8.4 m: <sup>3</sup>He detectors with ToF <sup>17</sup> acquisition system (triggered with accelerator)

IPHI Facility Overview

Ion Source

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ

Beam

Next Steps

Neutron Experiments

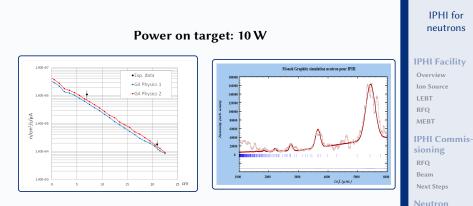
Run 3

Future Experiments

### Neutron Production Experiment – Run 1 Experimental Results



Experiments


Experiments Conclusion

Runs 1 & 2

Run 3

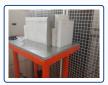
Future

18



Gold disks measurements inside the moderator (dots) GEANT4 Monte Carlo simulations (lines)

TOF measurements at 8 m (dots) Graphite crystal Full proof fit (line)


## Run 2 – Experimental Setup



### Main goals

- Fast neutrons emissions
- Background





<sup>3</sup>He detector + PE shielding + B4C shielding (looking at the target at 8m)

#### **Available detectors**

- Bonner sphere
- <sup>3</sup>He detector on lift table
- "Fast neutrons" detector CEA -DEDIP (Ion. Chamb. + Micromegas)
- "Thermal neutron" detector CEA -DEDIP (Ion. Chamb. + Micromegas)
- Gamma chambers
- Gamma Nal spectrometer

## IPHI for neutrons

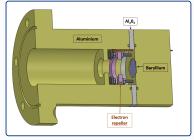
#### **IPHI Facility**

Overview Ion Source LEBT RFQ MEBT

IPHI Commissioning RFQ Beam

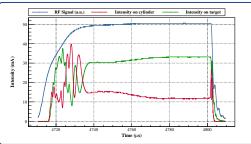
Next Steps

Neutron Experiments


Runs 1 & 2 Run 3

19

Future Experiments


## Run 2 - Beam Intensity Measurement





### **Beam Intensity Measurement**

- Insulated Be target
- Electron repeller
- Insulated cylinder



## IPHI for neutrons

#### **IPHI Facility**

Overview

Ion Source

LEBT

RFQ

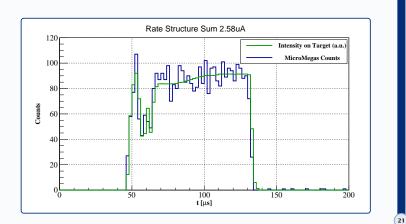
MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

#### Neutron Experiments

Runs 1 & 2 Run 3


20

Future Experiments

# Run 2 – Beam Intensity on Target and Fast Neutrons Detection



IPHI for neutrons



## Beam Intensity on Target

Signal integrated by fast neutrons detector

IPHI Facility Overview Ion Source LEBT RFQ IPHI Commissioning RFQ Beam Next Steps

Neutron Experiments

Runs 1 & 2 Run 3

Future Experiments

## **Neutron Production Experiments Run 3**

**Goals and Experimental Conditions** 

### Goals

- Increase the proton beam power on target, up to several kW.
- Characterize the beam on target.
- R & D on solid targets.

### Experiments

- Preliminary tests on an Al target.
- Neutron production with a solid Be target,  $\phi$  50 mm.
- New moderator and shielding.
- Several weeks of experiment, first semester 2019.

For detailed consideration on the solid Be target, see Burkhard ANNIGHÖFER's talk, *A Solid Beryllium Target for Sonate.* 



## IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ

Beam Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

22

Future Experiments

## **Neutron Production Experiments Run 3**

**Goals and Experimental Conditions** 

### Goals

- Increase the proton beam power on target, up to several kW.
- Characterize the beam on target.
- R & D on solid targets.

### Experiments

- Preliminary tests on an Al target.
- Neutron production with a solid Be target,  $\phi$  50 mm.
- New moderator and shielding.
- Several weeks of experiment, first semester 2019.

For detailed consideration on the solid Be target, see Burkhard ANNIGHÖFER's talk, *A Solid Beryllium Target for Sonate.* 



## IPHI for neutrons

#### **IPHI Facility**

Overview

Ion Source

LEBT

RFQ

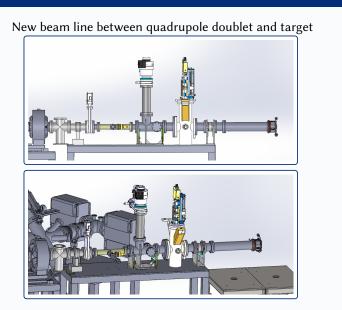
MEBT

#### IPHI Commissioning RFQ

Beam

Next Steps

Neutron Experiments


Runs 1 & 2 Run 3

22

Future Experiments

### Neutron Production Experiment Run 3 Experimental Setup





IPHI for neutrons

#### **IPHI Facility**

Overview

Ion Source

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

23

Future Experiments

### Neutron Production Experiment Run 3 Experimental Setup



New moderator/reflector and shielding for beam power increase.

IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source

ion sour

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ

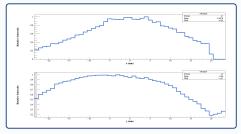
Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3


24

Future Experiments

### Run 3 – Beam Diagnostics on Target SEM grid profiler

### **Secondary Emission Monitor**

- Design and electronics by GANIL
- 48 wires spaced by 1 mm in 2 planes



 $\sigma_x = 10.4 \,\mathrm{mm} - \sigma_y = 11.6 \,\mathrm{mm}$ 

- Reliable measurement
- Can be used for beam tuning

• Measurement only at low duty cycle and low current (20 mA at 0.1%)





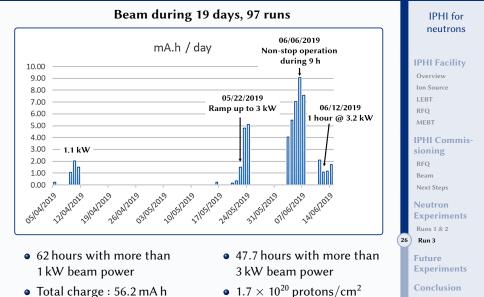
## IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source LEBT RFQ MEBT

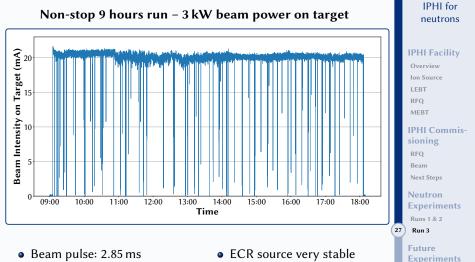
IPHI Commissioning RFQ Beam Next Steps

Neutron Experiments


Runs 1 & 2 Run 3

25

Future Experiments


Experiment with 3 kW beam power on a Be target





## Run 3 – Non-Stop Operation During One Day





- Beam pulse: 2.85 ms ۲
- Repetition rate: 17 Hz ۲

- ECR source very stable
- a few sparks in the RFQ





- The IPHI Facility, a High Intensity Proton Injector
- 2 IPHI Commissioning
- **3** Neutron Production Experiments with IPHI
- Future Experiments: Toward 50 kW on Target
- **5** Conclusions and Perspectives



#### **IPHI Facility**

Overview Ion Source

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

28 Future Experiments



### Several challenges to increase the beam power

- RFQ commissioning at 30% duty cycle at full voltage
- Optimization of beam dynamics
- Improve the beam line
- New beam diagnostic to monitor the beam
- New target design
- Power density on target ; 500 W cm<sup>-2</sup>

IPHI for neutrons

#### **IPHI Facility**

Overview

Ion Source

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ

Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

29 Future Experiments

## How to Limit the Beam Density on Target?

### Beam rastering: several solutions

- Change beam density distribution (non-linear optics: hexapoles, octupoles)
- Moving target (mechanical rastering)
- Target tilting by an angle  $\alpha$  (density decrease  $\propto \sin \alpha$ )
- Beam deflection with sweeping magnet



Target tilt by  $20^{\circ}$  in one plane. Target size increase  $\approx$  factor of 3.



Magnetic sweeping in the other plane  $B \propto \sin\left(2\pi f_{sweep} t + \varphi\right)$ 



## IPHI for neutrons

#### **IPHI Facility**

Overview

Ion Source

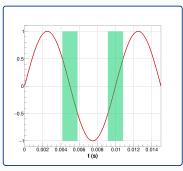
LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ Beam

Next Steps


Neutron Experiments

Run 3

30

)Future Experiments

## Beam Rastering with Sweeping Magnet Synchronization



Sweeping signal for magnet

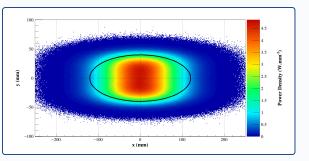
- Sweeping frequency : 100 Hz Deviation angle  $\approx 6.6$  mrad  $(0.38^{\circ})$ .
- Beam has to be synchronized with the sweeping signal: the linear part of the sinusoidal signal is used, 30 % of the time.
- Beam repetition rate: 200 Hz.



IPHI for neutrons

IPHI Facility Overview Ion Source LEBT RFQ MEBT IPHI Commissioning RFQ Beam Next Steps Neutron

Neutron Experiments


Runs 1 & 2

Run 3

31

Future Experiments

### Beam Rastering with Sweeping Magnet Beam density simulation results



Beam density on target. Maximum density ;  $500 \text{ W cm}^{-2}$ .

- Gaussian beam on target:  $\sigma_x = 20 \text{ mm} \sigma_y = 10 \text{ mm}$ , balayé dans un plan (vertical).
- Tilted target in the horizontal plane ( $\approx 19.5^{\circ}$ ).
- Beam intensity: 51 mA, 30 % duty cycle 51 kW beam power.



IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

#### 32 Future Experiments

## Overview



- The IPHI Facility, a High Intensity Proton Injector
- 2 IPHI Commissioning
- 8 Neutron Production Experiments with IPHI
- Future Experiments: Toward 50 kW on Target
- **5** Conclusions and Perspectives



#### **IPHI Facility**

Overview Ion Source

LEBT

RFQ MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

Future Experiments

## **Conclusions and Perspectives**

### Conclusions

- IPHI beam commissioning has been done up to 7 kW beam power.
- IPHI is reliable enough to perform experiments of neutron production.
- Experiment with a 3 kW beam power on solid a Be target (56.2 mA h).
- Promising experimental results.

#### Perspectives

- Ramp-up IPHI duty cycle to 30 %.
- Experiment with a 50 kW beam power on target is foreseen.
- A lot of challenges are ahead of us: beam dynamics, diagnostics, target development, neutron simulations...
- Detailed accelerator design for SONATE



## IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source

LEBT

RFO

MEBT

#### IPHI Commissioning RFQ Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

Future Experiments

## **Conclusions and Perspectives**

### Conclusions

- IPHI beam commissioning has been done up to 7 kW beam power.
- IPHI is reliable enough to perform experiments of neutron production.
- Experiment with a 3 kW beam power on solid a Be target (56.2 mA h).
- Promising experimental results.

#### Perspectives

- Ramp-up IPHI duty cycle to 30 %.
- Experiment with a 50 kW beam power on target is foreseen.
- A lot of challenges are ahead of us: beam dynamics, diagnostics, target development, neutron simulations...
- Detailed accelerator design for SONATE.



## IPHI for neutrons

#### **IPHI Facility**

Overview Ion Source

on Sourc

LEBT

RFQ

MEBT

#### IPHI Commissioning RFQ

Beam

Next Steps

Neutron Experiments

Runs 1 & 2

Run 3

Future Experiments

## The Whole Team !





... an those who are not on the picture: C. Alba-Simionesco, B. Bolzon, J. Darpentigny, C. Doira, C. Deberles, G. Exil, P. Gastinel, Y. Gauthier, F. Gibert, E. Giner-Demange, A. Gomes, K. Jiguet, E. Jorgji, W. Josse, O. Kuster, R. Lautie, P. Lavie, A. Letourneau, A. Marchix, A. Menelle, K. Paunac, P. Permingeat, E. Petit, F. Porcher, B. Pottin, F. Prunes, O. Sineau, L. Thulliez, H. N. Tran

## IPHI for neutrons

#### **IPHI Facility**

- Overview Ion Source LEBT RFQ MEBT
- IPHI Commissioning RFQ Beam Next Steps

Neutron Experiments

Run 3

Future Experiments