

# NEUTRON SCATTERING ON COMPACT NEUTRON SOURCES

<u>F Ott</u><sup>1</sup>, H N Tran<sup>2</sup>, X Fabrèges<sup>1</sup>, A Menelle<sup>1</sup>, N Chauvin<sup>2</sup>, J Schwindling<sup>2</sup>, A Letourneau<sup>2</sup>, A Marchix<sup>2</sup>, C Alba-Simionesco<sup>1</sup>

<sup>1</sup> Laboratoire Léon Brillouin, CEA Saclay 91191 Gif sur Yvette France <sup>2</sup> IRFU, CEA Saclay 91191 Gif sur Yvette France

| PAGE 1



#### Neutrons in Europe (baseline ERFRI scenario)



#### in France



ESFRI Report, Neutron scattering facilities in Europe, Present status and future perspectives, 2017



# **Neutron production**

# Nuclear reactor

- Technological limit reached decades ago
- Nuclear risk





# **Spallation**

- High energy protons (~1 GeV) excite a heavy nucleus (ex. W)
- The excited nucleus evaporates neutrons (~15 n/p)

# Stripping

- Low energy protons (3 60 MeV) strip a neutron from a light element (ex. Be, Li)
- Efficiency (0.01 à 0.1 n/p)



# WHAT IS A CANS ? COMPACT ACCELERATOR-DRIVEN NEUTRON SOURCE



### CANS

- lon source (p or d)
- Accelerator E<sub>p</sub> ~ 7- 50 MeV
- Target Be or Li (« stripping » reaction)
- Moderator (thermal cold)
- Thermal / cold neutron Instruments

# cea

# WHAT ABOUT CANS ACROSS THE WORLD ?

#### **Outside Europe**

- LENS (USA), CANS@SNS
- HUNS, RANS, KUANS, NUANS, iBNCT, OUANS, QUANS, THUANS, UTYANS (Japon)
- SARAF (Israel), CPHS (Chine), PKUNIFTY (Pekin)

# Within Europe

- **LENOS** (Legnaro)  $E_p = 70$  MeV,  $I_{av} = 750 \mu$ A, Lithium target (under commissioning)
- **ESS-Bilbao**  $E_p = 50 \text{ MeV}, P = 115 \text{ kW}, \text{ rotating Be target}$
- HBS High Brillance Source (JCNS) E<sub>p</sub> = 50MeV, I<sub>peak</sub> = 100mA, P = 100kW, fixed Be target
- NOVA-ERA (JCNS) E<sub>p</sub> = 10MeV, I<sub>peak</sub> = 1mA, P = 1kW, Be target, duty cycle 4-10%
- LvB Ludwig Van Beethoven (Hungary) Ep = 3 MeV
- **SONATE** (CEA)  $E_p = 20 \text{ MeV}$ ,  $I_{peak} = 100 \text{ mA}$ , duty cycle = 4%, P = 80kW, fixed Be target.



# **STATE OF THE ART AT CANS**

# **NEUTRON SCATTERING**

#### SANS data @ LENS Univ Indiana)

- @13MeV; 20mA; 20Hz, 600µs; I<sub>av</sub> = 0.24mA ; **P = 3kW**
- CTAB (200mM) micelles with 120 mM NaCl.
  (Das et al, Langmuir 2014).



#### HUNS @ Hokkaido



(left) SANS in steel samples with (filled markers) and without (open markers) nanoscopic precipitates. (right) Braggedge transmission spectra measured at HUNS, and the profile fitting curves obtained by RITS.



Counts/hour

# **RANS** @ RIKKEN, JAPON

Z-Rietveld





SUS316 75%CR 100% 600 400 [nm] BCC FCC BCC BCC FCC FCC 200 200 211 220 110 111 Peaks of both textures are measured

SUS316 7.3% SUS316 19.1%

Powder diffraction pattern in steel (austenite – *martensite ratios*)

Radiography of corroded steel plates and humidity up-take as a function of time. Pixel Size 0.8x0.8mm<sup>2</sup>; 5 minutes exposure time; Ep = 7 MeV;  $I_{av} = 15 \mu A$ ; P = 100W.

DE LA RECHERCHE À L'INDUSTRI



### **CPHS (CHINA)**



# NOMINAL

 $E_p = 13$ MeV,  $I_{peak} = 50$ mA, duty cycle = 2.5%, P = 16.3kW

ACTUAL

 $E_p = 3MeV$ ,  $I_{peak} = 50mA$ , duty cycle = 2.5%, P = 3kW

MCP image of a USAF-1951 Gd-mask measured with the beam line of CPHS (left) and CARR (right). Note that the measuring conditions are not documented (measuring time, L/D ratio, CARR power...)







#### Users want something as good as what they are used to

Reference level = Orphée

How far can we push CANS?



#### Very high proton current

- ISIS TS2 : E = 0.8 GeV ; I = 50µA
- IPHI : E = 3 MeV ; I = 100mA
- ESS: E = 2GeV ; I = 60mA
- IFMIF: E = 10MeV; I = 125mA



# **MAXIMISING THE BRILLANCE: STRONG COUPLING**

#### Réacteur

- Core = 0.1 m<sup>3</sup>
- Moderator vessel D<sub>2</sub>O ~ 1m<sup>3</sup>



# **Spallation**

- target = 4 litres
- moderator ~ 1 litre (not too well coupled)



Para-H2 thcikness 1.5cm, diamètre  $D_M$  = 15 cm Premoderator H2O Thickness  $e_{PM}$  =2cm – diameter  $D_{PM}$  = 15 cm

Solid angle= 1.2sr



# Stripping

- Target = 0.05 litres
- moderator ~ 1 litre (coupling 90%)







# **MAXIMISING THE BRILLANCE: TUBE MODERATOR**

#### Prototype moderator (LLB)



#### Possible « final design »



J.P. Dabrück Univ. Aachen

Flux penalty <10% with 5 holes





F. Mezei et al , Journal of Neutron Research 17 (2014) 101–105 101 DOI 10.3233/JNR-140013,

#### DE LA RECHERCHE À L'INDUSTRI

# **COLD MODERATORS**

#### Design « rather easy » / Very low heat load:

- 1.5W on cryogenic components / 3.3mW/cm3 on methane
- Nothing developed at Saclay yet

# Other examples



#### JCNS

T. Cronert et al Journal of Physics: Conference Series **746** (2016) 012036



# CHOICE OF THE DESIGN PARAMETERS

### Starting point

- Maximum peak current : I = 100mA (hard limit)
- Operation in time-of-flight (Duty cycle <4%, ESS time structure)</p>
- Beryllium target
- Choice of the proton energy
  - Neutron yield
  - Accelerator cost
  - Power on the target

4E+14 INCL4.6/ABLA07 library 4E+14 3E+14 Neutrons /mA 3E+14 2E+14 2E+14 1E+14 5E+13 0E+00 20 50 10 30 40 0 E<sub>protons</sub> (MeV) PAGE 15

#### Neutron yield per mA Vs proton energy

#### DE LA RECHERCHE À L'INDUSTRI

# **CHOICE OF THE DESIGN PARAMETERS**

#### The moderator should be as compact as possible.

- The target should be as small as possible
  - Typical size <100cm<sup>2</sup>
  - Max power density 0.5-1 kW/cm<sup>2</sup>
  - Typical proton beam power ~50 100kW

ESS

Long pulse - 2.86ms - 14Hz - 4% duty cycle





# **OPERATION PARAMETERS CHOICE**

#### Proton beam energy choice

- Neutron yield : Y ~ 2 x E
- Power on target : P ~ E
- Lower energy fast neutron spectrum  $\rightarrow$  moderation is more efficient
- Less high energy gamma background
- Smaller cost : C ~ 2 x E (very rough)

# Figure of Merit difficult to define

- 20 MeV I<sub>peak</sub> 100mA 4% duty cycle P = 80kW : Yield = 3.1x10<sup>14</sup> n/s
- 40 MeV I<sub>peak</sub> 100mA 2% duty cycle P = 80kW : Yield = 5.4x10<sup>14</sup> n/s

# **Reference designs**

- SONATE (CEA)
  Ep = 20MeV, I<sub>peak</sub> = 100mA, duty cycle = 4%, P = 80kW, fixed Be target.
- HBS High Brillance Source (JCNS)
  - Ep = 50MeV,  $I_{peak}$  = 100mA, duty cycle = 2%, P = 100kW, fixed Be target

# cea

# **MONTE CARLO MODERATOR SIMULATIONS**





# MODERATOR BRILLANCE

#### Polyéthylène moderator + reflector

- Neutron brillance is 3x10<sup>7</sup> n/cm<sup>2</sup>/s/µA/sr (at 20MeV) (GEANT4 Monte-Carlo simulations)
- In agreement with experimental values by (Allen, NIM A 1994) measured at 10MeV / 30µA using a PE moderator

# Source brillance for an average current of 4mA

1.2 x 10<sup>11</sup> n/cm<sup>2</sup>/s/sr

- This value was used for the source brillance in McStas Monte-Carlo simulations
- Repetition rate and pulse length as adjustable parameters
  Duty cycle < 4%</li>



#### REFLECTOMETRY

# Aim for a low resolution instrument : $dQ/Q \sim 10\%$ Assume f = 20Hz, w = 2ms



# Wavelength resolution for L=12m with double disk chopper



| PAGE 20

#### REFLECTOMETRY

### McStas simulations : Ni 20nm//Si at an incidence angle of 3°





### REFLECTROMETRY

### Flux at sample position

#### HERMES@LLB design

straight guide of length 8m with m = 4, cross section 100x50mm<sup>2</sup>; a 2 m long collimator with F1 = 2 mm and F2 = 2 mm and a side guide with m = 4; a detector at 2 m from the sample position.

- the neutron flux at the sample position is 8x10<sup>6</sup> n/cm<sup>2</sup>/s
- on the order of CRISP@ISIS and HERMES@LLB (10<sup>7</sup> n/cm<sup>2</sup>/s)

# Cea sans

#### Reference design

- Cold source / w = 2ms / f = 20Hz
- Source sample distance = 8m.
- Sample detector distance = 1 to 7m (PAXY@LLB)
- Total flight path L from 9 to 15m
- Useful bandwidth : 3A° to 16A° (depends on the total instrument length)



| Configuration | L <sub>g</sub> (m) | L <sub>1</sub> (m) | L <sub>2</sub> (m) | L <sub>tot</sub> (m) | D <sub>1</sub> (mm) | D <sub>2</sub> (mm) | Flux (n/cm²/s)              |
|---------------|--------------------|--------------------|--------------------|----------------------|---------------------|---------------------|-----------------------------|
| Low Q         | 1                  | 7                  | 7                  | 15                   | 20                  | 16                  | 0.7x10 <sup>6</sup>         |
| Medium Q      | 4                  | 4                  | 4                  | 12                   | 20                  | 16                  | 2.2x10 <sup>6</sup>         |
| High Q        | 6                  | 2                  | 1                  | 9                    | 20                  | 16                  | 6.7x10 <sup>6</sup>         |
| PAXE@LLB      | 6                  | 2.5                | 2.5                | 11                   | 12                  | 8                   | 0.7x10 <sup>6</sup> (low Q) |

# Reference design (transposition of MAGIK@ESS) (X. Fabrèges)

12000

- Cold source / w =  $250\mu$ s / f = 40Hz (1% duty cycle)
- Source sample distance = 52m.
- Sample detector distance = 1 m
- Total flight path L = 53 m
- Useful bandwidth : 1.4A° to 3.3A°
- *Δλ/λ*: 1.3% to 0.5%

# Comparison with G4.1@LLB :

10000 G4.1: Presto  $Flux = 4F6 n/cm^2/s$ 8000 G4.1 I (cnts/s) Divergence: div  $h=0.3^{\circ}$ , div  $v=3^{\circ}$ 6000 Detector: 80°x3° (35% eff.) PRFSTO: 4000 Flux: 2E6 n/cm<sup>2</sup>/s 2000 Divergence:  $div_h = div_v = 0.6^\circ$ Detector: 80°x3° (35% eff.) 0 1 2 3 0 Gain: x0.7 Q ( $Å^{-1}$ ) Detector: 120°x20° (90% eff.) (7C2@LLB) Gain: x20

Presto/G4.1 on Na2Ca3Al2F14: gain=0.78

# RADIOGRAPHY

# Radiography usually performed on continuous source

A pulsed source is handicaped

# Design 1: Short instrument L/D = 250

Flux 1.5 x 10<sup>6</sup> n/cm<sup>2</sup>/s
 Counting times remain low (10-60s)

Limitation set by the experiment kinetic



PSD\_sample [PSD\_pinhole.dot] X0=-0.0226743; dX=11.8715; YD=0.000990549; dY=11.8901;

# Design 2 : Long instrument (50m) for Bragg edge imaging

- textures strain (IMAT@ISIS, ODIN@ESS)
- Drawback : very long instrument

| Technique                  | Flux on sample                                                                                                  | Reference spectrometers                                                                                               |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Imaging<br>(white beam)    | $1.5 \times 10^{6} \text{ n/s/cm}^{2}$ (for L/D = 240)<br>$1.3 \times 10^{7} \text{ n/s/cm}^{2}$ (for L/D = 80) | ICON@PSI 1x10 <sup>7</sup> n/s/cm <sup>2</sup><br>CONRAD@PSI 1x10 <sup>7</sup> n/s/cm <sup>2</sup><br>(for L/D = 240) |
| Imaging<br>(time resolved) | 10 <sup>5</sup> n/s/cm² (for L/D = 500)<br>dl/l = 1%                                                            | ANTARES@FRM2 5x10 <sup>5</sup> n/s/cm <sup>2</sup><br>(1% resolution)                                                 |



#### SPECTROSCOPY

Only rough estimates performed at the LLB

### J. Voigt (JCNS) performed « clean » estimates

- Key ingredient: source tuning  $\rightarrow$  fast repetition rates (100 400 Hz)
- J. Voigt et al, NIM A 884 (2018) 59–63





For a medium flux HBS with 100 kW beam power, 100 mA peak current and 50 MeV deuteron energy

|                                    | Backscattering   | Cold ToF             | Thermal ToF     |
|------------------------------------|------------------|----------------------|-----------------|
| $E_{i,f} \; (\mathrm{meV})$        | 1.84             | 5                    | 45              |
| $\frac{\Delta \vec{E}_i}{E_i}$ (%) | 1                | 2                    | 5               |
| $\Delta \dot{	heta}(^{\circ})$     | 4                | 2                    | 0.75            |
| $\Delta t(\mu s)$                  | 120              | 50                   | 18              |
| Rep. rate (Hz)                     | 200              | 100                  | 400             |
| Flux $(cm^{-2}s^{-1})$             | $2.5 	imes 10^7$ | $1.3 	imes 10^5$     | $1 \times 10^5$ |
| Reference instrument               | OSIRIS           | $\operatorname{LET}$ | MERLIN          |
| Flux reference $(cm^{-2}s^{-1})$   | $2.7 	imes 10^7$ | $5 	imes 10^4$       | $6 \times 10^4$ |



#### **SPIN-ECHO**

#### Spin-Echo uses a broad wavelength band (~20%)

Very efficient on a reactor (continuous source)

#### Reference design (S. Longeville)

- Straight guide L<sub>g</sub> = 4m ; m=4 ; section 100x100mm<sup>2</sup>
- Collimator L<sub>1</sub> = 4.6m with 40mm pin-holes (angular divergence ~1°)
- Detector at 3m from the sample
- Total length 12m.

#### Flux (polarised) on the sample : 2x10<sup>6</sup> n/cm<sup>2</sup>/s

- To be compared with 2x10<sup>7</sup> n/s/cm<sup>2</sup> at 5Å on MUSES@LLB = 10% of MUSES
- Possible upgrade : multi-MUSES : gain x70
- One may still imagine having an instrument 10x more efficient that the current MUSES

#### Use Very Cold Neutrons ?

- Moderator at 4K
- Very low heat load
  - 1.5W on cryogenic components
  - 3.3mW/cm3 on methane
- Not demonstrated yet

WORKSHOP ON APPLICATIONS OF A VERY COLD NEUTRON SOURCE (Argonne, 2005) (170 pages!)

|               | resolution at fixed geometry | Intensity at fixed resolution |
|---------------|------------------------------|-------------------------------|
| SANS          | $\lambda^{-1}$               | $\lambda^{0}$                 |
| Reflectometry | $\lambda^{-1}$               | $\lambda^2$                   |
| TOF-INS       | λ-3                          | $\lambda^2$                   |
| NSE           | λ-3                          | $\lambda^2 - \lambda^4$       |



| Technique                  | Flux on sample                                                                                                                                         | Reference                                                                                                                                                                   | Potential gains                                              |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
|                            |                                                                                                                                                        | spectrometers                                                                                                                                                               |                                                              |  |
| Reflectivity               | 0.8x10 <sup>7</sup> n/s/cm <sup>2</sup>                                                                                                                | HERMES@LLB 1x10 <sup>7</sup> n/s/cm <sup>2</sup><br>POLREF@ISIS ~1x10 <sup>7</sup> n/s/cm <sup>2</sup>                                                                      | ESTIA@ESS concept x10<br>Advanced Deconvolution x3           |  |
| SANS                       | 0.7x10 <sup>6</sup> n/s/cm <sup>2</sup> (low Q)<br>2.2x10 <sup>6</sup> n/s/cm <sup>2</sup> (med Q)<br>6.7x10 <sup>6</sup> n/s/cm <sup>2</sup> (high Q) | PAXY@LLB (low Q) 0.7x10 <sup>6</sup> n/s/cm <sup>2</sup><br>SANS2D@ISIS 1x10 <sup>6</sup> n/s/cm <sup>2</sup>                                                               | Slit setup x10<br>Focusing optics for VSANS<br>(small Q) x10 |  |
| Powder<br>diffraction      | 2x10 <sup>6</sup> n/s/cm <sup>2</sup>                                                                                                                  | G41@LLB 2x10 <sup>6</sup> n/s/cm <sup>2</sup>                                                                                                                               | Large solid angle detector<br>(7C2 type) x20                 |  |
| Imaging<br>(white beam)    | $1.5x10^{6} \text{ n/s/cm}^{2}$ (for L/D = 240)<br>$1.3x10^{7} \text{ n/s/cm}^{2}$ (for L/D = 80)                                                      | ICON@PSI 1x10 <sup>7</sup> n/s/cm <sup>2</sup><br>CONRAD@HZB 1x10 <sup>7</sup> n/s/cm <sup>2</sup><br>(for L/D = 240)                                                       | MCP detectors x5<br>Coded Source Imaging x10                 |  |
| Imaging<br>(time resolved) | 1x10 <sup>5</sup> n/s/cm <sup>2</sup> (for L/D = 500)<br>dl/l = 1%                                                                                     | ANTARES@FRM2 5x10 <sup>5</sup> n/s/cm <sup>2</sup>                                                                                                                          |                                                              |  |
| Direct TOF                 | 1x10 <sup>5</sup> n/s/cm <sup>2</sup> (thermal)<br>1.3x10 <sup>5</sup> n/s/cm <sup>2</sup> (cold)                                                      | MERLIN@ISIS 6x10 <sup>4</sup> n/cm <sup>2</sup> /s        LET@ISIS      6x10 <sup>4</sup> n/cm <sup>2</sup> /s        IN5@ILL      6.8x10 <sup>5</sup> n/cm <sup>2</sup> /s | MUSHROOM (LETx70 on single crystals)                         |  |
| Back scattering            | 2.5x10 <sup>7</sup> n/cm <sup>2</sup> /s                                                                                                               | OSIRIS@ISIS 2.7x10 <sup>7</sup> n/cm <sup>2</sup> /s                                                                                                                        |                                                              |  |
| Spin-Echo                  | 2x10 <sup>6</sup> n/s/cm <sup>2</sup>                                                                                                                  | MUSES@LLB 2x107 n/s/cm2 (at 5A°)                                                                                                                                            | Multi-MUSES (x70)                                            |  |

# MODULARITY

#### Possibility to install several targets

- Cold / low repetition rate target
- Thermal / high repetition rate target
- One cold source per instrument

# If the finances allow it it might be possible to boost the protons energy from 20 to 40 or 60 MeV

Beware : the RFQ should be oversized

#### An accelerator source is a lot more versatile than a reactor





#### **FIRST TESTS A SACLAY**

#### Accelerateur IPHI@Saclay: 3MeV - 100mA peak



Opération at 10W Avoid producing too many neutrons













Neutron Flux (n/cm2/s)





1 « generic » instrument : SANS, réflectomètre, imagerie, diffraction Measurements on samples – Proof of concept – Performances validation



# **2030: 10 INSTRUMENTS AROUND 2 TARGETS**



### Neutron provision for the French community users over the period 2015 to 2035



# CES COSTS

|                                 | Coût | Existing Capital                                     |
|---------------------------------|------|------------------------------------------------------|
| Source construction             | 40   | Source (4M€)<br>RFQ (IPHI) (10M€)<br>Bâtiments (5M€) |
| Spectrometer construction (x10) | 30   | 20 (LLB + CRG +ILL)                                  |
| TOTAL                           | 70   | 39                                                   |

| Source Operation (180 Jours / 4 shifts)  | 0.75 |  |
|------------------------------------------|------|--|
| Operations of 10 instruments (40 people) | 3.2  |  |
| TOTAL                                    | 4    |  |

| Facility                           | ILL   | ISIS  | MLZ  | SINQ | ESS  | LLB  | SONATE<br>TS1 + TS2 |
|------------------------------------|-------|-------|------|------|------|------|---------------------|
| First Neutrons                     | 1971  | 1994  | 2004 | 1998 | 2023 | 1981 | 2025-2030           |
| Replacement value (M€)             | 2000  | 800   | 600  | 750  | 1847 | 400  | 70                  |
| Operating costs (M€)               | 95    | 62    | 55   | 30   | 140  | 30   | 3.65                |
| Instrument-day (k€)                | 11.9  | 16.7  | 9.2  | 12.5 | 35.3 | 7.9  | 2                   |
| Operation cost / replacement value | 4.75% | 7.75% | 9.2% | 4%   | 7.6% | 6.7% | 5.2%                |



# HARD POINT

#### **Beryllium target**

- High power density : ~< 1kW/cm<sup>2</sup>
- Embrittlement: fragilization due to the formation of hydrogen bubbles



Fig. 8 Multiple Target Failures at 7 MeV

#### Various strategies under study

- Be: LENS, RANS, JCNS, ESS-Bilbao, CEA...
- Li: SARAF, Nagoya, various BNCT facilities in Japan



# **CONCLUSION**

#### The performances of a high end compact source are potentially equivalent to a medium power nuclear reactor for neutron scattering

Reduced cost / not a nuclear facility

#### Technologically

Instruments

- Accelerator OK Target
  - $\rightarrow$  CMR50
- Moderator OK / can be improved OK

# Possiblity to benefit from the

#### French ecosystem

- Scientific and technical expertise at the LLB and ILL
- Broad user base (~1500)
- Possibility to reuse efforts deployed for ESS
  - Instrument designs
  - Detectors developments
  - Data reduction and processing
- Existing instrumental suite

# SONATE a "Neutrons for Materials Science" platform





# TABLE-TOP TO FLAGSHIP

#### Adapted from Thomas Brückel (FZ Jülich)





# Monte-Carlo simulations

- H.N. Tran (IRFU/SPhN) (post-doc)
- A. Marchix (IRFU/SPhN)
- A. Letourneau (IRFU/SPhN)
- J. Darpentigny (IRAMIS/LLB)
- CEA/SPR (shielding / activation)
- TechnicAtome
- DEN/SERMA

# IPHI

- J. Schwindling (IRFU/SACM)
- N. Chauvin (IRFU/SACM)
- IPHI personnel
  - B. Pottin, G. Perreu ...

# Instruments simulations

- X. Fabrèges (IRAMIS/LLB)
- A. Menelle (IRAMIS/LLB)
- F. Ott (IRAMIS/LLB)

# Target - moderateur

- N. Sellami (IRFU/SIS)
- B. Annighöfer (IRAMIS/LLB)
- P. Permingeat (IRAMIS/LLB)

# **Technical support**

- K. Jiguet (IRAMIS/LLB)
- W. Josse (IRAMIS/LLB)
- B. Homatter (IRAMIS/LLB)
- P. Lavie (IRAMIS/LLB)
- J.-L. Meuriot (IRAMIS/LLB)
- F. Prunes (IRAMIS/LLB)
- ...

# Strategic support

- C. Alba-Simionesco (IRAMIS/LLB)
- R. Duperrier (IRFU/SACM)
- A. Leservot (DRF/DCEPI)