Laboratoire Léon Brillouin

UMR12 CEA-CNRS, Bât. 563 CEA Saclay

91191 Gif sur Yvette Cedex, France

+33-169085241 llb-sec@cea.fr

BD diffusons les neutrons

Faits marquants scientifiques 2021

10 octobre 2021

J. Wolanin, L. Michel, D. Tabacchioni, J. M. Zanotti, J. Peters, I. Imaz, B. Coasne, M. Plazanet, and C. Picard

With their strong confining porosity and versatile surface chemistry, zeolitic imidazolate frameworks—including the prototypical ZIF-8—display exceptional properties for various applications. In particular, the forced intrusion of water at high pressure (∼25 MPa) into ZIF-8 nanopores is of interest for energy storage. Such a system reveals also ideal to study experimentally water dynamics and thermodynamics in an ultrahydrophobic confinement. Here, we report on neutron scattering experiments to probe the molecular dynamics of water within ZIF-8 nanopores under high pressure up to 38 MPa. In addition to an overall confinement-induced slowing down, we provide evidence for strong dynamical heterogeneities with different underlying molecular dynamics. Using complementary molecular simulations, these heterogeneities are found to correspond to different microscopic mechanisms inherent to vicinal molecules located in strongly adsorbing sites (ligands) and other molecules nanoconfined in the cavity center. These findings unveil a complex microscopic dynamics, which results from the combination of surface residence times and exchanges between the cavity surface and center.

https://doi.org/10.1021/acs.jpcb.1c06791

 

18 septembre 2021

T. Fiuza, M. Sarkar, J. C. Riedl, A. Cebers, F. Cousin, G. Demouchy, J. Depeyrot, E. Dubois, F. Gelebart, G. Meriguet, R. Perzynski and V. Peyre

Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide – EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at F = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m1 ) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.

https://doi.org/10.1039/d0sm02190c

 

02 novembre 2021

Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi

Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure. The synthesis of these atomically precise metal clusters, typically with metal cores smaller than 2 nm in diameter, makes use of stabilizing functional molecules such as thiol ligands, hence deriving the common name – monolayer-protected clusters (MPCs). The next stage toward applications and at the same time a challenge in the field, is the manipulation and controlled organization of MPCs into two dimensional (2D) superlattices which would exhibit a collective response of the desired kind. Multiple examples of deposition techniques have been extensively studied, including droplet evaporation, spin-coating and chemical vapor deposition. However, a common drawback of all these methods is the failure to form large-scale structures of closely packed particles. Here, we study the formation and deposition of extended thin films of Au38(SC2H4Ph)24 nanoclusters onto solid supports by the Langmuir-Blodgett (LB) method. A combination of techniques, atomic force microscopy (AFM), high magnification transmission electron microscopy (TEM), X-ray reflectivity (XRR), and grazing incidence wide-angle X-ray scattering (GIWAXS) is applied to reveal the morphology and the degree of vertical and in-plane ordering of the transferred films. We find that while a degree of order is initially obtained between the clusters, temporal annealing of the compressed films successfully removes mesoscopic defects between islands of nanoclusters but that it does so at the cost of reducing the local order within the domains. To our knowledge, this is the first reported example of the deposition on an extended scale (several cm2) of ordered gold nanoclusters in the small size regime of 1 – 2 nm.

https://doi.org/10.1002/smll.202005954

16 février 2021

Alessio Zaccone and Laurence Noirez, J. Phys. Chem. Lett.12 (2021) 1, 650–657.

Liquids confined to sub-millimeter scales have remained poorly understood. One of the most striking effects is the large elasticity revealed using good wetting conditions, which grows upon further decreasing the confinement length, L. These systems display a low-frequency shear modulus in the order of 1–103 Pa, contrary to our everyday experience of liquids as bodies with a zero low-frequency shear modulus.

While early experimental evidence of this effect was met with skepticism and abandoned, further experimental results and, most recently, a new atomistic theoretical framework have confirmed that liquids indeed possess a finite low-frequency shear modulus G′, which scales with the inverse cubic power of confinement length L. We show that this law is universal and valid for a wide range of materials (liquid water, glycerol, ionic liquids, non-entangled polymer liquids, isotropic liquids crystals). Open questions and potential applications in microfluidics mechanochemistry, energy, and other fields are highlighted.

https://doi.org/10.1021/acs.jpclett.0c02953.

07 juin 2021

S. Biesenkamp, D. Gorkov, D. Brüning, A. Bertin, T. Fröhlich, X. Fabrèges, A. Gukasov ,M. Meven, P. Becker, L. Bohaty, T. Lorenz and M. Braden, Phys. Rev. B 103 (2021) 134412.

The crystal and magnetic structures of multiferroic LiFe(WO4)2 were investigated by temperature and magnetic-field-dependent specific heat, susceptibility, and neutron diffraction experiments on single crystals. Considering only the two nearest-neighbor magnetic interactions, the system forms a J1, J2 magnetic chain, but more extended interactions are sizable. Two different magnetic phases exhibiting long-range incommensurate order evolve at TN1 ≈ 22.2 K and TN2 ≈ 19 K. First, a spin-density wave develops with moments lying in the ac plane. In its multiferroic phase below TN2, LiFe(WO4)2 exhibits a spiral arrangement with an additional spin component along b. Therefore, the inverse Dzyaloshinskii-Moriya mechanism fully explains the multiferroic behavior in this material. A partially unbalanced multiferroic domain distribution was observed even in the absence of an applied electric field. For both phases only a slight temperature dependence of the incommensurability was observed, and there is no commensurate phase emerging at low temperature or at finite magnetic fields up to 6  T. LiFe(WO4)2 thus exhibits a simple phase diagram with the typical sequence of transitions for a type-II multiferroic material.

DOI : http://doi.org/10.1103/PhysRevB.103.134412

02 novembre 2021

Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi

Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure. The synthesis of these atomically precise metal clusters, typically with metal cores smaller than 2 nm in diameter, makes use of stabilizing functional molecules such as thiol ligands, hence deriving the common name – monolayer-protected clusters (MPCs). The next stage toward applications and at the same time a challenge in the field, is the manipulation and controlled organization of MPCs into two dimensional (2D) superlattices which would exhibit a collective response of the desired kind. Multiple examples of deposition techniques have been extensively studied, including droplet evaporation, spin-coating and chemical vapor deposition. However, a common drawback of all these methods is the failure to form large-scale structures of closely packed particles. Here, we study the formation and deposition of extended thin films of Au38(SC2H4Ph)24 nanoclusters onto solid supports by the Langmuir-Blodgett (LB) method. A combination of techniques, atomic force microscopy (AFM), high magnification transmission electron microscopy (TEM), X-ray reflectivity (XRR), and grazing incidence wide-angle X-ray scattering (GIWAXS) is applied to reveal the morphology and the degree of vertical and in-plane ordering of the transferred films. We find that while a degree of order is initially obtained between the clusters, temporal annealing of the compressed films successfully removes mesoscopic defects between islands of nanoclusters but that it does so at the cost of reducing the local order within the domains. To our knowledge, this is the first reported example of the deposition on an extended scale (several cm2) of ordered gold nanoclusters in the small size regime of 1 – 2 nm.

https://doi.org/10.1002/smll.202005954

26 janvier 2021

La "corona" désigne l'enveloppe de protéines qui entoure spontanément toute nanoparticule plongée dans un milieu biologique. Elle joue un rôle important dans les mécanismes couramment en jeu en nanomédecine et nanotoxicologie. En étudiant un système modèle de nanoparticules de silice plongées dans une solution d'hémopotéines, il vient d'être montré que les mécanismes d'assemblage de cette corona est fonction de la taille des protéines, ce qui montre la nécessité d'intégrer ce facteur dans les études protéomiques et toxicologiques.

 

29 novembre 2021

Les nanoparticules offrent de nouvelles propriétés spécifiquement liées à leur taille. Parmi-celles-ci, une bonne efficacité catalytique est attendue du fait de leur très grande surface spécifique. Les effets plasmoniques, oscillations électroniques collectives, à la fréquence de la lumière dans le domaine visible pour des particules nanométriques d'or, peuvent aussi être finement ajustés selon la taille et la forme des nanoparticules. Mais comment contrôler finement ces paramètres lors de la synthèse, et ce faisant ces propriétés plasmoniques ?

Un procédé original est proposé par les chercheurs de l’IRAMIS/LLB et leurs partenaires, où l'élaboration des nanoparticules est basé sur la réduction métallique d'ions AuCl4- piégés dans des nano-moules organiques, par radiolyse aux rayons X [1].

 

23 novembre 2021

Christopher D. O’Neill, Gino Abdul-Jabbar, Didier Wermeille, Philippe Bourges, Frank Krüger and Andrew D. Huxley

The theory of quantum order-by-disorder (QOBD) explains the formation of modulated magnetic states at the boundary between ferromagnetism and paramagnetism in zero field. PrPtAl has been argued to provide an archetype for this. Here, we report the phase diagram in magnetic field, applied along both the easy a axis and hard b axis. For field aligned to the b axis, we find that the magnetic transition temperatures are suppressed and at low temperature there is a single modulated fan state, separating an easy a axis ferromagnetic state from a field polarized state. This fan state is well explained with the QOBD theory in the presence of anisotropy and field. Experimental evidence supporting the QOBD explanation is provided by the large increase in the T2 coefficient of the resistivity and direct detection of enhanced magnetic fluctuations with inelastic neutron scattering, across the field range spanned by the fan state. This shows that the QOBD mechanism can explain field induced modulated states that persist to very low temperature.

DOI : 10.1103/PhysRevLett.126.197203

19 novembre 2021

Nécessaires à la réalisation de dispositifs quantiques aux propriétés originales, ou pour mettre en évidence des comportements originaux de la matière, les physiciens du solide explorent de nouveaux composés, à la recherche de matériaux aux propriétés nouvelles et spécifiquement quantiques. Un des objectifs de la physique de la matière condensée moderne est ainsi de mettre à jour et d’étudier de nouvelles phases quantiques de la matière, dont la description dépasse les modèles classiques. Une collaboration entre l'équipe NFMQ du laboratoire Léon Brillouin, l’Institut Néel et l’Université de Warwick, a ainsi mis en évidence un nouvel état magnétique, à très basse température, dans un oxyde de zirconium et de titane : Nd2Zr2O7.

 

02 novembre 2021

Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi

Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure. The synthesis of these atomically precise metal clusters, typically with metal cores smaller than 2 nm in diameter, makes use of stabilizing functional molecules such as thiol ligands, hence deriving the common name – monolayer-protected clusters (MPCs). The next stage toward applications and at the same time a challenge in the field, is the manipulation and controlled organization of MPCs into two dimensional (2D) superlattices which would exhibit a collective response of the desired kind. Multiple examples of deposition techniques have been extensively studied, including droplet evaporation, spin-coating and chemical vapor deposition. However, a common drawback of all these methods is the failure to form large-scale structures of closely packed particles. Here, we study the formation and deposition of extended thin films of Au38(SC2H4Ph)24 nanoclusters onto solid supports by the Langmuir-Blodgett (LB) method. A combination of techniques, atomic force microscopy (AFM), high magnification transmission electron microscopy (TEM), X-ray reflectivity (XRR), and grazing incidence wide-angle X-ray scattering (GIWAXS) is applied to reveal the morphology and the degree of vertical and in-plane ordering of the transferred films. We find that while a degree of order is initially obtained between the clusters, temporal annealing of the compressed films successfully removes mesoscopic defects between islands of nanoclusters but that it does so at the cost of reducing the local order within the domains. To our knowledge, this is the first reported example of the deposition on an extended scale (several cm2) of ordered gold nanoclusters in the small size regime of 1 – 2 nm.

https://doi.org/10.1002/smll.202005954

10 octobre 2021

J. Wolanin, L. Michel, D. Tabacchioni, J. M. Zanotti, J. Peters, I. Imaz, B. Coasne, M. Plazanet, and C. Picard

With their strong confining porosity and versatile surface chemistry, zeolitic imidazolate frameworks—including the prototypical ZIF-8—display exceptional properties for various applications. In particular, the forced intrusion of water at high pressure (∼25 MPa) into ZIF-8 nanopores is of interest for energy storage. Such a system reveals also ideal to study experimentally water dynamics and thermodynamics in an ultrahydrophobic confinement. Here, we report on neutron scattering experiments to probe the molecular dynamics of water within ZIF-8 nanopores under high pressure up to 38 MPa. In addition to an overall confinement-induced slowing down, we provide evidence for strong dynamical heterogeneities with different underlying molecular dynamics. Using complementary molecular simulations, these heterogeneities are found to correspond to different microscopic mechanisms inherent to vicinal molecules located in strongly adsorbing sites (ligands) and other molecules nanoconfined in the cavity center. These findings unveil a complex microscopic dynamics, which results from the combination of surface residence times and exchanges between the cavity surface and center.

https://doi.org/10.1021/acs.jpcb.1c06791

 

18 septembre 2021

T. Fiuza, M. Sarkar, J. C. Riedl, A. Cebers, F. Cousin, G. Demouchy, J. Depeyrot, E. Dubois, F. Gelebart, G. Meriguet, R. Perzynski and V. Peyre

Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide – EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at F = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m1 ) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.

https://doi.org/10.1039/d0sm02190c

 

28 juin 2021

Christopher D. O’Neill, Gino Abdul-Jabbar, Didier Wermeille, Philippe Bourges, Frank Krüger, and Andrew D. Huxley

Quantum order by disorder revealed 
 
Ferromagnets are ubiquitous in everyday life, present in household items ranging from fridge-magnets on a fridge door to the sensors and motors inside, while dozens can be found in an average car. As temperature is raised ferromagnetic order disappears, but more rarely the formation of more fascinating states can occur in which the uniform magnetic order is replaced by a static magnetic wave. One mechanism for this is known as quantum order by disorder; the wave (the order) forms because it has more low energy excited states (the disorder) available to it than the uniform state and this lowers its energy, offsetting the energy cost of producing the wave.  In a recent paper appearing in Physical Review Letters such a static oscillation was achieved for the first time by applying a magnetic field at right angles to the easy axis moment in a ferromagnet, allowing the resulting increase in magnetic excitations to be clearly seen with neutron scattering.  In the long term the creation of such magnetic oscillations with variable pitch could be useful, for example, to make magnetic diffraction gratings for spintronics.
 

https://doi.org/10.1103/PhysRevLett.126.197203

12 avril 2021

Julie Wolanin, Jérôme Giraud, Claude Payre, Marianne Benoit, Claire Antonelli, Damien Quemener, Iliass Tahiri, Matthieu Vandamme, Jean-Marc Zanotti, and Marie Plazanet, Review of Scientific Instruments 92 (2021) 024106

In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint.

Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10−9 s–10−12 s. Moreover, it can easily be modified for other scattering techniques.

https://doi.org/10.1063/5.0030297

26 février 2021

La structure des protéines est en lien étroit avec leur fonction. Ainsi, sonder les états de repliement et d'oligomérisation des protéines est un défi majeur en biologie.

Grâce au développement d’un dispositif spécifique, nous avons montré que l’utilisation de la haute pression (HP), associée à des méthodes de caractérisation structurale, est un outil puissant pour caractériser la struture des protéines et révéler des intermédiaires subtils de dépliement, qui seraient inaccessibles par d’autres méthodes de dénaturation.

19 janvier 2021

Jaehong Jeong, Benjamin Lenz, Arsen Gukasov, Xavier Fabrèges, Andrew Sazonov, Vladimir Hutanu, Alex Louat, Dalila Bounoua, Cyril Martins, Silke Biermann, Véronique Brouet, Yvan Sidis, and Philippe Bourges, Phys. Rev. Lett. 125 (2020) 097202.

5d iridium oxides are of huge interest due to the potential for new quantum states driven by strong spin-orbit coupling. The strontium iridate Sr2IrO4 is particularly in the spotlight because of the so-called jeff = 1/2 state consisting of a quantum superposition of the three local t2g orbitals with, in its simplest version, nearly equal populations, which stabilizes an unconventional Mott insulating state.

Here, we report an anisotropic and aspherical magnetization density distribution measured by polarized neutron diffraction in a magnetic field up to 5 T at 4 K, which strongly deviates from a local jeff = 1/2 picture even when distortion-induced deviations from the equal weights of the orbital populations are taken into account. Once reconstructed by the maximum entropy method and multipole expansion model refinement, the magnetization density shows four cross-shaped positive lobes along the crystallographic tetragonal axes with a large spatial extent, showing that the xy orbital contribution is dominant. The analogy to the superconducting copper oxide systems might then be weaker than commonly thought.

https://doi.org/10.1103/PhysRevLett.125.097202.

19 janvier 2021

Jaehong Jeong, Benjamin Lenz, Arsen Gukasov, Xavier Fabrèges, Andrew Sazonov, Vladimir Hutanu, Alex Louat, Dalila Bounoua, Cyril Martins, Silke Biermann, Véronique Brouet, Yvan Sidis, and Philippe Bourges, Phys. Rev. Lett. 125 (2020) 097202.

5d iridium oxides are of huge interest due to the potential for new quantum states driven by strong spin-orbit coupling. The strontium iridate Sr2IrO4 is particularly in the spotlight because of the so-called jeff = 1/2 state consisting of a quantum superposition of the three local t2g orbitals with, in its simplest version, nearly equal populations, which stabilizes an unconventional Mott insulating state.

Here, we report an anisotropic and aspherical magnetization density distribution measured by polarized neutron diffraction in a magnetic field up to 5 T at 4 K, which strongly deviates from a local jeff = 1/2 picture even when distortion-induced deviations from the equal weights of the orbital populations are taken into account. Once reconstructed by the maximum entropy method and multipole expansion model refinement, the magnetization density shows four cross-shaped positive lobes along the crystallographic tetragonal axes with a large spatial extent, showing that the xy orbital contribution is dominant. The analogy to the superconducting copper oxide systems might then be weaker than commonly thought.

https://doi.org/10.1103/PhysRevLett.125.097202.

02 novembre 2021

Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi

Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure. The synthesis of these atomically precise metal clusters, typically with metal cores smaller than 2 nm in diameter, makes use of stabilizing functional molecules such as thiol ligands, hence deriving the common name – monolayer-protected clusters (MPCs). The next stage toward applications and at the same time a challenge in the field, is the manipulation and controlled organization of MPCs into two dimensional (2D) superlattices which would exhibit a collective response of the desired kind. Multiple examples of deposition techniques have been extensively studied, including droplet evaporation, spin-coating and chemical vapor deposition. However, a common drawback of all these methods is the failure to form large-scale structures of closely packed particles. Here, we study the formation and deposition of extended thin films of Au38(SC2H4Ph)24 nanoclusters onto solid supports by the Langmuir-Blodgett (LB) method. A combination of techniques, atomic force microscopy (AFM), high magnification transmission electron microscopy (TEM), X-ray reflectivity (XRR), and grazing incidence wide-angle X-ray scattering (GIWAXS) is applied to reveal the morphology and the degree of vertical and in-plane ordering of the transferred films. We find that while a degree of order is initially obtained between the clusters, temporal annealing of the compressed films successfully removes mesoscopic defects between islands of nanoclusters but that it does so at the cost of reducing the local order within the domains. To our knowledge, this is the first reported example of the deposition on an extended scale (several cm2) of ordered gold nanoclusters in the small size regime of 1 – 2 nm.

https://doi.org/10.1002/smll.202005954

02 novembre 2021

Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi

Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure. The synthesis of these atomically precise metal clusters, typically with metal cores smaller than 2 nm in diameter, makes use of stabilizing functional molecules such as thiol ligands, hence deriving the common name – monolayer-protected clusters (MPCs). The next stage toward applications and at the same time a challenge in the field, is the manipulation and controlled organization of MPCs into two dimensional (2D) superlattices which would exhibit a collective response of the desired kind. Multiple examples of deposition techniques have been extensively studied, including droplet evaporation, spin-coating and chemical vapor deposition. However, a common drawback of all these methods is the failure to form large-scale structures of closely packed particles. Here, we study the formation and deposition of extended thin films of Au38(SC2H4Ph)24 nanoclusters onto solid supports by the Langmuir-Blodgett (LB) method. A combination of techniques, atomic force microscopy (AFM), high magnification transmission electron microscopy (TEM), X-ray reflectivity (XRR), and grazing incidence wide-angle X-ray scattering (GIWAXS) is applied to reveal the morphology and the degree of vertical and in-plane ordering of the transferred films. We find that while a degree of order is initially obtained between the clusters, temporal annealing of the compressed films successfully removes mesoscopic defects between islands of nanoclusters but that it does so at the cost of reducing the local order within the domains. To our knowledge, this is the first reported example of the deposition on an extended scale (several cm2) of ordered gold nanoclusters in the small size regime of 1 – 2 nm.

https://doi.org/10.1002/smll.202005954

18 septembre 2021

T. Fiuza, M. Sarkar, J. C. Riedl, A. Cebers, F. Cousin, G. Demouchy, J. Depeyrot, E. Dubois, F. Gelebart, G. Meriguet, R. Perzynski and V. Peyre

Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide – EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at F = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m1 ) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.

https://doi.org/10.1039/d0sm02190c

 

18 septembre 2021

T. Fiuza, M. Sarkar, J. C. Riedl, A. Cebers, F. Cousin, G. Demouchy, J. Depeyrot, E. Dubois, F. Gelebart, G. Meriguet, R. Perzynski and V. Peyre

Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide – EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at F = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m1 ) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.

https://doi.org/10.1039/d0sm02190c

 


Retour en haut