Laboratoire Léon Brillouin
UMR12 CEA-CNRS, Bât. 563 CEA Saclay
91191 Gif sur Yvette Cedex, France
+33-169085241 llb-sec@cea.fr
J. Wolanin, L. Michel, D. Tabacchioni, J. M. Zanotti, J. Peters, I. Imaz, B. Coasne, M. Plazanet, and C. Picard
With their strong confining porosity and versatile surface chemistry, zeolitic imidazolate frameworks—including the prototypical ZIF-8—display exceptional properties for various applications. In particular, the forced intrusion of water at high pressure (∼25 MPa) into ZIF-8 nanopores is of interest for energy storage. Such a system reveals also ideal to study experimentally water dynamics and thermodynamics in an ultrahydrophobic confinement. Here, we report on neutron scattering experiments to probe the molecular dynamics of water within ZIF-8 nanopores under high pressure up to 38 MPa. In addition to an overall confinement-induced slowing down, we provide evidence for strong dynamical heterogeneities with different underlying molecular dynamics. Using complementary molecular simulations, these heterogeneities are found to correspond to different microscopic mechanisms inherent to vicinal molecules located in strongly adsorbing sites (ligands) and other molecules nanoconfined in the cavity center. These findings unveil a complex microscopic dynamics, which results from the combination of surface residence times and exchanges between the cavity surface and center.
https://doi.org/10.1021/acs.jpcb.1c06791
• Physics, chemistry, nanoscience and materials around large instruments › Physique de la matière condensée, étude par l’interaction rayonnement matière
Physique, chimie, nanosciences et matériaux autour des grands instruments › L'IRAMIS et les Grands Instruments
• Laboratoire Léon Brillouin (LLB) • Leon Brillouin Laboratory (LLB)
• Groupe "Matière molle et biophysique" - MMB
• Neutrons • Activités instrumentales nationales et internationales du LLB - National and internatonial instrumental activities at the LLB • Inelastic scattering • Quasi-elastic scattering