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1 Introduction
Since the early days of Rahman's historic
simulation of liquid argon [1], Molecular
Dynamics (MD) simulations have become a
standard tool for the investigation of the structure
and dynamics of condensed matter. The best
experimental reference for MD simulation are
neutron scattering experiments, since both methods
cover the same time and space domains
(approximately 0.1 fs – 10 ns, and 1 – 100 Å), and
neutrons “see” the atomic nuclei, which are the
basic objects in MD simulations.Once agreement
between simulated and experimental spectra is
found, the simulated trajectories can be analyzed in
detail and information not accessible to
experiments can be extracted from simulations.
This approach is particularly useful for the study of
complex molecular systems, such as biological
macromolecules. Over the last ten years programs
have been developed which allow to simulate and
analyze the structure and dynamics of molecular
systems an the basis of MD simulation [2, 3].

2 C-phycocyanine
The first example concerns hydrated C-
phycocyanin, a light-conducting protein in
cyanobacteria. MD simulation and an analytical
model have been used to model diffusive motions
in this protein. Since the simulation-derived
scattering function was found to be in good
agreement with experiment, a further analysis was
undertaken to find the essential contributions. It is
found that the geometry of the atomic motions can
be modeled as diffusion in spheres with a
distribution of radii that is different for backbone
(average radius = 1.1 Å) and side chains (average
radius = 2.0 Å). The time dependence follows a
stretched exponential behavior, reflecting a
distribution of relaxation times. With this
description, the average side-chain and backbone
dynamics are quantified and compared. The
dynamical parameters are also shown to present a
smooth variation with distance from the core of the
protein. This is reflected in a progressive increase
of the mean sphere size of diffusion and in the
narrowing and shift to shorter times of the
relaxation time distribution. This smooth, “depth-

dependent” dynamics may have important
consequences for protein function. It may allow
local reorganization of the structure for efficient
ligand binding without affecting the internal
stability [4, 5].

3 Simulation-based modeling
An essential point that should be retained from the
last example is that internal protein dynamics is
characterized by multi-scale relaxation processes.
A model process that is still simpler than diffusion
in a sphere, and which describes confined motions
as well, is diffusion in a multidimensional
harmonic well. Multiscale relaxation is obtained by
coupling harmonic oscillators with friction. Such
models can give quantitative agreement with full
MD simulations, if one considers a coarse-grained
scale where each residue is represented by a point
[6, 7]. The parameters of the model (force
constants and friction coefficients) are obtained
from conventional protein force fields and short
simulations [7]. Another method to describe
multiscale relaxation in proteins is to use the
concept of memory functions [8]. Each correlation
function, and in particular the intermediate
scattering function,

[ ])0()t(.
e,( α−β∑

βα
βα=

RRq
q

Ti

,
coh bbt)I (1)

obeys an integral equation of the form

 ).,I()-t,(d-t),I( t
0t τττξ=∂ ∫ qqq (2)

Here ξ(q,t)  is the memory function which can be
interpreted as a generalized friction coefficient. In
case of confined motion the memory function
equation (2) is applied to I’(q,t) =  I(q,t) –
EISF(q), where EISF(q) = limt→∞ I(q,t) is the
Elastic Incoherent Structure Factor. When the
memory kernel is short-ranged compared to the
correlation function I(q,t), the latter becomes a
simple exponential. Internal protein dynamics is
known to span an enormous range of time scales,
ranging from sub-picoseconds to seconds. There is
no  characteristic  time  scale  for the  decay I’(q,t),
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Figure 1. The lysozyme molecule. Each atom is
represented by a sphere with the corresponding van
derWaals radius.

Figure 2. Simulated incoherent intermediate scattering
function, I’(q,t), of lysozyme, averaged over 30
momentum transfer vectors with q = 15 nm-1. The
corresponding dynamic structure factor, S’(q,ω), is
shown in the inset.

since all internal protein motions are coupled due
to the high atomic density which can be higher
than  in  solids.  This  leads   to  a  non-exponential

decay of I’(q,t), and the corresponding dynamic
structure factor, S’(q,ω), is not a Lorentzian. Fig. 2
shows the simulated incoherent intermediate
scattering function of lysozyme (see Fig. 1) at 300
K and normal pressure and the corresponding
dynamic structure factor. All functions have been
computed from a 1 ns trajectory, using
autoregressive modelling of time series [3, 9]. The
corresponding memory function is shown in Fig. 3.
It can be seen that ξ(q,t) has an algebraic long-time
tail of the form
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where τ > 0 and  0 < β <1. This is a characteristic
feature of “fractal dynamics” with long-time
memory [10, 11]. We note that the short-time
behavior of ξ(q,t) is not well resolved since a
coarse-grained autoregressive model with a
sampling interval of ∆t = 0.4 ps has been used.

Figure 3. Memory function corresponding to I’(q,t)
depicted in Fig. 2.
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