Water Dynamics in Confinement: Insights from NMR experiments

Michael Vogel

Institut für Festkörperphysik
Technische Universität Darmstadt
Outline

• Introduction
• Basics of 2H NMR Experiments
• Water dynamics in protein matrices
• Water dynamics in silica matrices
• Summary
Bulk Water

Water anomalies:
Controversial discussion about the origin

Stanley et al.:
• Liquid-liquid phase transition (HDL-LDL)
• Existence of a second critical point

Nature (98), PNAS (05)

Structure
Changes in the order of the HB network

Paschek et al., CPC 08

Dynamics
Fragile-strong transition

Angell Science (08)
Confined Water

QENS

Hydrated lysozyme (h=0.3 g/g)

\[E_a = 0.14 \text{ eV} \]

Chen et al., PNAS (06)

NMR diffusometry

Hydrated lysozyme (h=0.3 g/g)

Mallamace et al., JCP (07)

Evidence for a fragile-strong transition
Confined Water

QENS

Hydrated C-phycocyanin (h=0.3)

Hydrated myoglobin (h=0.35)

![QENS Graph]

Doster et al., PRL 10

Conductivity

Hydrated lysozyme (h=0.4)

![Conductivity Graph]

Chen

Pawlus et al., PRL (08)

No evidence for a fragile-strong transition
Confined Water

Dielectric spectroscopy

Crossover in the temperature dependence at \(T \approx T_g \)
Universal hydration water dynamics at \(T > T_g \) and at \(T < T_g \)

Cerveny et al., PRE (08)

\(E_a = 0.54 \) eV
Confined Water

\[\log_{10}(\tau) \]

\[\frac{1}{T} \]

\[\alpha \]

\[\beta \]

Chen et al., PNAS (05)
Liu et al., PRL (05)
Kumar et al., PRL (06)
Mallamace et al., JCP (07)

\[T_g \]

\[\alpha_{\text{conf}} \]

Cerveny et al., PRB (08)

\[T_g \]

\[\text{JG \beta} \]

Capaccioli et al., JPC B (07)
Ngai et al, JPC B (08)
Outline

• Introduction

• Basics of 2H NMR Experiments

• Water dynamics in protein matrices

• Water dynamics in silica matrices

• Summary
Basics of ^2H NMR Experiments

Quadrupolar Interaction

^2H: nuclear spin $I=1$

quadrupole moment Q

$H_Q = \frac{eQ}{2I(2I-1)\hbar} IVI$

$V_{\alpha\beta} = \frac{\partial^2 \Phi}{\partial r_{\alpha} \partial r_{\beta}}$

Φ: electric potential

$\omega(\theta,\phi) = \pm \delta/2 \left[3\cos^2\theta - 1 - \eta \sin^2\theta \cos(2\phi) \right]$

(θ,ϕ): polar coordinates of \mathbf{B}_0 in PAS of EFG tensors

δ: anisotropy parameter, η: asymmetry parameter
Basics of 2H NMR Experiments

Quadrupolar Interaction for D_2O
($\eta \approx 0$)

The resonance frequency ω depends on the orientation of the O-D bond:

$$\omega(\theta) = \pm \frac{\delta}{2} (3\cos^2 \theta - 1)$$

Molecular reorientation renders ω time dependent.
Basics of 2H NMR Experiments

Spin-lattice relaxation

\[\frac{1}{T_1} = C \cdot [J(\omega_L) + 4J(2\omega_L)] \]

\[J(\omega) = \int_0^\infty F_2(t) \cos(\omega t) dt \]

T_1 minimum at $\omega_L \tau = 0.6 \rightarrow \tau \approx 10^{-9}$ s

Line-shape analysis

\[\omega(\theta) = \pm \delta/2 (3\cos^2\theta - 1) \]

Motional narrowing at $\delta \tau = 0.6 \rightarrow \tau \approx 10^{-6}$ s

Stimulated-echo experiments

\[F_2(t_m) = \langle \omega(0) \cdot \omega(t_m) \rangle \]

\[1/\delta \leq \tau \leq T_1 \rightarrow \tau \approx 10^{-3}$ s \]
2H NMR Spin-Lattice Relaxation

\[
\frac{1}{T_1} = \frac{2}{15} \delta^2 [J_2(\omega_0) + 4J_2(2\omega_0)] \quad J_2(\omega) = \int_0^\infty F_2(t) \cos(\omega t) dt
\]

Exponential correlation function (BPP)

\[F_2(t) = e^{-\frac{t}{\tau}} \quad J_{BPP}(\omega) = \frac{\tau}{1 + \omega^2 \tau^2} \]

Distribution of correlation times \(G(\log \tau) \)

Cole-Davidson spectral density

\[J_{CD}(\omega) = \omega^{-1} \sin[\beta_{CD} \arctan(\omega \tau_{CD})](1 + \omega^2 \tau_{CD})^{(\beta_{CD}/2)} \]

Cole-Cole spectral density

\[J_{CC}(\omega) = \frac{\omega^{-1} \sin(\beta_{CC} \pi)(\omega \tau_{CC})^{\beta_{CC}}}{1 + (\omega \tau_{CC})^{2\beta_{CC}} + 2 \cos(\beta_{CC} \pi)(\omega \tau_{CC})^{\beta_{CC}}} \]
2H NMR Line-Shape Analysis

Limit of slow motion: \(\tau >> 1/\delta \approx 1\mu s \) (\(\eta = 0 \))

In crystalline powders and amorphous materials, a distribution of molecular orientations exists (powder average)

Due to the dependence of the frequency on the orientation, broad powder spectra are observed

\[
\omega(\theta) = \pm \frac{\delta}{2} (3\cos^2\theta - 1)
\]

\(\theta = 0^\circ \)

\(\theta = 90^\circ \)

M.H. Levitt

Spin Dynamics
2H NMR Line-Shape Analysis

Limit of fast motion: $\tau << 1/\delta \approx 1\mu s$ ($\eta=0$)

- **Isotropic Reorientation:** $\bar{\delta} = 0$, $\bar{\eta} = 0$
- **Uniaxial Reorientation:** $\bar{\delta} = \frac{\delta}{2}(3\cos^2\Psi - 1)$, $\bar{\eta} = 0$

Isotropic

- $\tau << 1/\delta$
- $\tau >> 1/\delta$

Uniaxial

- $\tau << 1/\delta$
- $\tau >> 1/\delta$

High temperature

Low temperature
If a broad distribution of correlation times $G(\log \tau)$ exists, e.g., because of a broad distribution of activation energies $g(E_a)$.

Weighted superposition of a broad line and a narrow line (two-phase spectra)

$g(E_a)$ can be determined from the weight of the narrow line:

$$g(E_a) = \frac{dW(T)}{dT}$$
2D ^2H NMR Experiments

Evolution (t_1) and detection (t_2) times are limited by T_2

Mixing time t_m is limited by $T_1 \gg T_2$
2D 2H NMR Experiments

Stimulated-echo sequence: t_m: mixing time

t_1, $t_2 < t_m \approx \tau < T_1$

$t_m \approx 10^{-5}-10^0$ s

Measure and correlate the frequencies at two times:

$$F_2^{SS}(t_m; t_p) = \langle \sin(\omega_1 t_1) \cdot \sin(\omega_2 t_2) \rangle$$

$$F_2^{CC}(t_m; t_p) = \langle \cos(\omega_1 t_1) \cdot \cos(\omega_2 t_2) \rangle$$

Analysis in frequency domain:

Vary t_1 and t_2 for constant t_m

2D NMR spectrum $S(\omega_1, \omega_2)$ results from 2D Fourier transformation

Analysis in time domain:

Vary t_m for constant $t_1 = t_2 = t_p$

Rotational correlation function is obtained from analysis of echo height

$$F_2(t_m; t_p) = \langle \cos[(\omega_2 - \omega_1)t_p] \rangle$$
2D 2H NMR Spectra

No reorientation

$(\omega_1 = \omega_2)$

Isotropic reorientation

$(\omega_1 \neq \omega_2)$

S(ω_1, ω_2) measures the joint probability of finding a frequency ω_1 before the mixing time t_m and frequency ω_2 after this period.

Defined jump-angle β

Schmidt-Rohr and Spiess
Multidimensional NMR and Polymers
2H NMR Stimulated-Echo Experiments

Meaning of the evolution time

\[F_2(t_m; t_p) = \langle \cos[(\omega_2 - \omega_1)t_p] \rangle \]

Variation of the evolution time enables adjustment of angular resolution of stimulated-echo experiments

short \(t_p \): poor resolution
(large angles)

long \(t_p \): high resolution
(small angles)
Meaning of the evolution time

Structural relaxation of supercooled liquids

Determination of jump angle ϕ:

$$\frac{\tau(t_p \to \infty)}{\tau(t_p \to 0)} = \frac{3}{2} \sin^2 \phi$$

Evolution-time dependence $\tau(t_p)$ provides access to jump angles
Outline

• Introduction
• Basics of ^2H NMR Experiments
• Water dynamics in protein matrices
• Water dynamics in silica matrices
• Summary
Biological Background

Interactions between protein and water are essential for biological functions.

Bacteriorhodopsin

Temperature-dependent experiments yield valuable insights.

Fenimore et al., PNAS (2002)

Hydrated proteins:

Dynamical transition at 200-220 K is often accompanied by an onset of the biological function.
Biological Background

Connective Tissue
- amorphous ground substance
- collagen fibers (tensile strength)

elastin fibers (elasticity)

Skeletal Muscle

myoglobin
warrants oxygen transport
Samples

Elastin + D$_2$O
Collagen + D$_2$O
Myoglobin + D$_2$O

2H NMR studies on the dynamical behaviors of protein-water mixtures

Low hydration levels $h = 0.2$-1.0 (g water/ g protein)
Due to proton exchange, a fraction of deuterons arrives at proteins

Collagen + D$_2$O

M. V.,
PRL 101, 225701 (08)

Magnetization builds up in two steps:

1. step (T_{1W}): supercooled water
2. step (T_{1P}): protein

Signal from protein hydration waters can be singled out in partially relaxed experiments.
2H NMR Spin-Lattice Relaxation

Elastin/Collagen + D₂O

![Graph showing relaxation times for Elastin/Collagen + D₂O](image)

\[\omega_L = 2\pi \cdot 76.8 \text{ MHz} \]

\[\frac{1}{T_1} = C \cdot [J(\omega_L) + 4J(2\omega_L)] \]

\[J(\omega) = \int_0^\infty F_2(t) \cos(\omega t) dt \]

BPP:

\[F_2(t) = e^{-t/\tau} \]

\[J_{BPP}(\omega) = \frac{\tau}{1 + \omega^2 \tau^2} \]

Myoglobin + D₂O

![Graph showing relaxation times for Myoglobin + D₂O](image)

\[\omega_L = 2\pi \cdot 46.1 \text{ MHz} \]

Highly comparable water dynamics

Very broad distribution \(G(\log \tau) \)
2H NMR Spin-Lattice Relaxation

Elastin + D$_2$O

![Graph showing T_1 relaxation data for Elastin + D$_2$O.]

$h = 0.43$

Myoglobin + D$_2$O

![Graph showing T_1 relaxation data for Myoglobin + D$_2$O.]

$h = 0.35$

DS: Gainaru et al.

$$g(E) \propto \exp\left(\frac{E - E_a}{2\sigma^2}\right) \quad E_a = 6330K \quad \sigma = 580K$$

DS: Jansson & Swenson

$$\varepsilon_{CC} = \varepsilon_\infty + \frac{\Delta \varepsilon}{1 + (i\omega \tau_{CC})^{\alpha_{CC}}}$$

Cole-Cole

$\alpha_{CC} = 0.48$

NMR and DS yield nicely consistent results
No indication of a fragile-strong transition at ca. 225 K
Gaussian distribution of activation energies $g(E_a)$
2H NMR Line-Shape Analysis

Myoglobin + D$_2$O

- **T ≥ 210K:**
 - Fast isotropic reorientation
 - ($\tau < 1/\delta \approx 1\mu$s)

- **210K ≥ T ≥ 140K:**
 - Fast anisotropic reorientation
 - ($\tau < 1/\delta \approx 1\mu$s)

- **140K > T:**
 - Absence of reorientation on a time scale of $1/\delta \approx 1\mu$s

Mechanism for water dynamics changes at ~ 210-220 K

Lusceac et al. (BBA 10)
Crossover from isotropic to anisotropic rotational motion on the microsecond time scale upon cooling through T\(\approx\)210-220 K

\(\tau<1/\delta\) and \(\tau>1/\delta\)

Lusceac et al. (JPC B 10)
Mechanisms for Low-Temperature Motion

Myoglobin + D₂O (h=0.35)

191K

π flip

\[\chi = 101.4^\circ \]

3-site jump

\[\chi = 130^\circ \]

distorted tetrahedral jump

\[85^\circ \]

Anisotropic large-angle (90-130°) jumps with a distribution of geometries?
Below 200 K, water shows anisotropic reorientation, which has a large amplitude, but no well-defined geometry.
Low-temperature water reorientation is characterized by:

Non-exponentiality

Large-angle jumps

M.V.
PRL (2008)
1H NMR Diffusometry

Application of a magnetic field with a field gradient $\mathbf{g}=(0,0,g)$:

$$\omega(z) = -\gamma(B_0 + g z)$$

Investigation of translational diffusion

Static field gradients (SFG)

- $\omega_1(z)$
- $\omega_2(z)$
- $t_p \leq T_2$
- $t_m \leq T_1$

higher gradients, more stable

Pulsed field gradients (PFG)

- $\omega_1(z)$
- $\omega_2(z)$
- $t_p \leq T_2$
- $t_m \leq T_1$

higher SNR, spectral resolution

For normal diffusion: $S = S_0 \exp\left(-q^2 D t_m\right)$

$q = g \gamma t_p$ bzw. $q = g \gamma \delta$

$D = 10^{-15} - 10^{-9} \text{ m}^2/\text{s}$

$1/q \approx 100 \text{ nm}$
Myoglobin + H$_2$O: high temperatures

Hydration water shows long-range translational diffusion

\[S = S_0 \exp\left(-q^2 D t_m\right) \]

\[q = g \gamma t_p \]

Rosenstihl et al. (JCP 11)
At low temperatures, stimulated-echo amplitude does not decay due to water diffusion, but rather due to cross relaxation.
1H SFG NMR Diffusometry

Temperature-dependent diffusion coefficients

![Graph showing temperature-dependent diffusion coefficients](image)

- Kink in temperature dependence due to onset of cross relaxation

Translational motion vs. rotational motion

![Graph showing translational motion and rotational motion](image)

- Different temperature dependence of rotational and translational motion

\[D_c = f \frac{\Gamma a^2}{6} \]

MD simulation:
- \(f = 0.4 \)
Outline

- Introduction
- Basics of 2H NMR Experiments
- Water dynamics in protein matrices
- Water dynamics in silica matrices
- Summary
Samples

D$_2$O (80% & 90%) in MCM-41 (C14)

Pore diameter: 2.9 nm

Yoshida et al., JCP (2008)
Buildup of magnetization occurs in
- 1 step at high temperatures
- 3 steps at low temperatures

In the following: suppression of ice signal
2H NMR Spin-Lattice Relaxation

Dynamically distinguishable water species
Kink in the temperature dependence at T~210 K
Fast relaxation step vanishes upon cooling
2H NMR Spin-Lattice Relaxation

Correlation times

Cole-Cole spectral density (symbols)

$\beta_{CC} = 0.59$ (80%)

$\beta_{CC} = 0.40$ (90%)

Cole-Davidson spectral density (crosses)

$\beta_{CD} = 0.30$ (80%)

$\beta_{CD} = 0.18$ (90%)

Kink in temperature dependence at 210 K ???

Distribution of correlation times $G(\log \tau)$
A fraction of water molecules shows liquid-like dynamics down to $T \sim 200$ K

Dynamically distinguishable water molecules: continuous and/or bimodal distribution $G(\log \tau)$?
$^2\text{H NMR Stimulated-Echo Decays}$

Correlation functions

$F_{2}^{CC}(t_m, t_p) = \langle \cos(\omega_1 t_p) \rangle \cos(\omega_2 t_p)$

Non-exponential correlation function

Finite plateau at intermediate times

Temperature dependence

$F_{2}^{CC}(t_m) = (1-F_\infty) \cdot \exp \left[-\left(\frac{t_m}{\tau_K} \right)^\beta \right] + F_\infty$

Diverse temperature dependence from spin-lattice relaxation and stimulated-echo experiments

$E_a = 0.54 \text{ eV}$
Comparison of Correlation Times

Temperature dependence:
Consistent with neutron scattering data at high temperatures
Consistent with dielectric spectroscopy data at low temperatures
2H NMR Stimulated-Echo Decays

Evolution-time dependence

Plateau height decreases with increasing angular resolution

$$F_2^{cc}(t_m; t_p) = \langle \cos(\omega_1 t_p) \cdot \cos(\omega_2 t_p) \rangle$$

$$F_2^{cc}(t_m) = (1 - F_\infty) \cdot \exp \left[-\left(\frac{t_m}{\tau_K} \right)^\beta \right] + F_\infty$$
2H NMR Stimulated-Echo Decays

Evolution-time dependence

Correlation times

- Large angle jumps
- Water
- Small angle jumps (glycerol, Böhmer et al.)

Plateau height

- Distorted \(\pi\)-flip + tetrahedral jump

Graphs:

1. **Correlation times:**
 - \(\tau(t_p) / \tau(t_p = 0)\) versus evolution time \(t_p\) in µs.
 - Data points for different samples.
2. **Plateau height:**
 - \(F(8)\) versus evolution time \(t_p\) in µs.
 - Graphs for different types of motion.

Legend:

- Four site jump
- Fully isotropic jump
- Random jump on a cone
- Superposition of motions
- Liquid at temperature \(T = 191.3\) K

Large-angle jumps

Distorted anisotropic motion
Summary

Water in protein matrices
shows no fragile-strong transition but a crossover from isotropic to anisotropic reorientation

The change of mechanism for rotational motion may be related to a crossover from diffusive motion to localized motion

Water in silica matrices
exhibits distinguishable dynamical processes

The processes dominating above and below ~210K, respectively, have different temperature dependence

All surface waters
show universal low-temperature dynamics which involves large-angle jumps with distributions of motional geometries and correlation times
Thank You

Prof. R. Böhmer (Dortmund)
Prof. J. Swenson (Gotheborg)
Prof. G. Buntkowsky (Darmstadt)

Research unit 1583

Dr. Sorin Lusceac
Dr. Markus Rosenstihl
Kerstin Kämpf
Matthias Sattig
13C CPMAS NMR Spectra

Hydrated Elastin (h=0.6 g/g)

13C MAS NMR

Elastin dynamics:
- requires an existence of a hydration shell
- freezes in upon cooling through 200-230 K

Lusceac et al., BBA (2010)

Perry et al., BJ (2002)