

techniques, applications and new perspectives.

Paolo G. Radaelli

ISIS Facility, Rutherford Appleton Laboratory

Les Rencontres de Saint-Aubin, Mar 2 2006

IS

Views of the Moderator Engineering

Paolo G. Radaelli

FWHM (µSec)

A generic TOF powder diffractometer

Diffractometers: Flux on Sample

Diffractometers: Dispersive resolution

TOF

Velocity Selector

Monochromator

Peak Brilliance

Supermirrors

Direct view of the moderator :

- Resolution depends on L
- $\Phi \alpha$ solid angle $\alpha 1/L^2$ so the distance is a limiting factor

Using optics :

- Can transport beam up to very large distance .
- However reflectivity drops rapidly in the "supermirror" region

(Measurements from Mirrotron).

- m=1 ,reflectivity about 99%
- above m=1, loose around 10% per extra m.

 $\theta_c \text{=} 0.0998.m.\lambda ~ 0.1m.\lambda$

Powder cross section

Powder cross section (TOF)

$$\int \left(\frac{\partial\sigma}{\partial\Omega}\right)_{coh}^{pow} d\lambda = \int \frac{N}{4\pi} \frac{(2\pi)^3}{v_0} m_{\tau} \frac{\lambda^2 \,\delta(\lambda - \lambda_{\tau})}{4\pi \,q^2 \sin\theta} |F(\tau)|^2 \,d\lambda$$

$$= \frac{1}{4\pi} \frac{N}{v_0} m_{\tau} \frac{\lambda^4}{8 \sin^3 \theta} |F(\tau)|^2 \neq \frac{1}{4\pi} \frac{N}{v_0} m_{\tau} \left\{ 2d^4 \sin\theta \right\} |F(\tau)|^2 \quad [\text{cm}^2 \, \text{A}^{-1}]$$

$$\int \left(\frac{\partial \sigma}{\partial \Omega}\right)_{coh}^{pow} d\lambda = \int \frac{N}{4\pi} \frac{(2\pi)^3}{v_0} m_\tau \frac{\lambda^2 \,\delta(\lambda - \lambda_\tau)}{4\pi \,q^2 \sin\theta} |F(\tau)|^2 \,d\lambda$$
$$= \frac{1}{4\pi} \frac{N}{v_0} m_\tau \frac{\lambda^4}{8 \sin^3 \theta} |F(\tau)|^2 = \frac{1}{4\pi} \frac{N}{v_0} m_\tau \left\{ 2 \,d^4 \sin\theta \right\} |F(\tau)|^2 \quad [\text{cm}^2 \,\text{A}^{-1}]$$

TOF Instrument designs

Resolution

HRPD

TOF data structure

- + Direct view of the moderator (no losses)
- + High flux at short wavelengths.
- + Good bandwidth ($\Delta\lambda$ =3957/v/l_{tot}).
- Problem to cool moderator below 100 K long wavelengths.
- No focussing = relatively low flux. Can recover with solid angle but...
- Fragmented data structure.

80 cm

Location of adsorbed species in NO-reduction catalysts

Refined data from pristine Cu-exchanged zeolite Y at 77 K collected in only 30 mins using all current detector banks on GEM. The structural evolution of the framework and of the adsorbed NO ligands was studied as a function of temperature and NO gas overpressure. *G C Hardy, M J Rosseinsky, Dept. of Chemistry, University of Liverpool & R M Ibberson, P G Radaelli, ISIS.*

<u>Multiferroics: REMn₂O₅</u>

- 1. N. Hur *et al.* Nature, **429**, 392 (2004)
- 2. L.C. Chapon et al., Phys. Rev. Lett. 93, 177402 (2004)
- 3. G. Blake et al., Phys. Rev. B 71, 214402 (2005)

<u>*REMn*₂O₅: temperature and field dependence</u>

Hydrogen sorption of Nb-catalysed, nanostructured Mg

F M Mulder, H G Schimmel (TU-Delft, The Netherlands), J Huot (Université du

17th/19th century iron armour plates

Sylvia Leever, J. Dik TU Delft, NL

D. Visser ISIS&NWO,NL

110 200 211 1.38 1 mrd 0.4

wt%: 99.9 Fe, 0.2 Fe₃C, 0.2 FeO

 $\rightarrow 0.002 \text{ wt\% C}$

wt%: 97.3 Fe, 2.5 Fe₃C, 0.2 Fe₃O₄ $\rightarrow 0.17$ wt% C

- + Sharp pulse structure w. poisoned moderator can reach particle size limit in backscattering
- + Resolution truly independent on d-spacing in backscattering
- + Can accommodate focussing.
- + Coupled moderators can be colder (20 K)
- Need to reduce the repetition rate to archive sufficient BW -> TS2.
- Need to transport neutrons efficiently optics.

High Pressure studies: Epsom salt on the moons of Jupiter

Ice crust

A D Fortes, M Alfredsson, J P Brodholt, L Vocùadlo, I G Wood, (University College London) and K S Knight (ISIS) ISIS Annual Report 2004.

Brine ocean

Salt hydrate upper mantle

Molten iron core

Inertia friction welding

Rolls-Royce plc. Compressor rotor factory (CRF)

IS

Modified PWHT

OSIRIS

GEM-OSIRIS Comparison Magnetic Diffraction

Intensity (arb. un.)

To build th diffrac

- TOF instrumed scattering. The towards the him
- <u>Need cold neu</u>
 Perfect match

WISH scientific themes

- Magnetism in ionic and covalent systems.
- Model and designer magnetic systems.
- Metallic magnets.
- Magnetic clusters and nano-particles.
- Magnetism under extreme conditions (pressure, magnetic field).
- Large unit-cell structures.

Initial requirements :

- WISH is primarily a <u>powder diffractometer</u> to be optimised for magnetic studies, but with a <u>full 2D detector</u> for SX studies.
- Dedicated 15 Tesla magnet

Phase 2 construction upgrade:

• Polarization device, flipping ratios, spin-density distributions

WISH Overview

Moderator Incident Wavelengths	Decoupled, Unpoisoned Solid Methane, broad side 1.5 - 15 Å
Single-frame bandwidth	8 A
d-spacing range	0.7 – 50 Å
L1	40m
L2	1-2.5 m
Flight path	Elliptical guide+ tunable divergence (slit collimation)
Choppers	3 disc choppers (50-10Hz)
Detectors	³ He linear PSD detectors covering all scattering angles between 10° and 175°.
Beam size	20 mm x 40mm (unfocussed) to 1 mm x 1mm (super-focussed)
Optimal frequency	10 Hz
Sample/detector tank	Radial Collimator, 2m diameter vacuum tank
Sample environment	All standard equipment + dedicated 15 T cryomagnet

Guide

- Guide entrance : 40 x 80 mm
- Guide exit : 22 x 44 mm
- Moderator and sample positioned at ellipse extremes
- 0.5 m sections with 0.5 mm breaks every 1.5 m.

WISH Detector

- ³He tubes PSD , 8mm diameter 125 pixels (8 mm resolution)
- 1 m long detectors (28 degrees azimuthal angle) at 2.2 m from sample position.
- Insensitive to magnetic field.
- Need good vertical resolution to reconstruct Debye-Scherrer cones.
- This option will enable single-crystal studies.
- Cover 10-170 degrees 2θ on both sides (~1200 tubes).
- Tubes on a 10 mm pitch.

 Initially considered secondary flight path under vacuum

•Current Design : Secondary flight path under Ar atmosphere

Flux at sample position

- Integrated flux is 1.2.10⁸ n/cm²/s at sample position (50 times GEM).
- Peak flux 200 times GEM at 4 Å in high divergence mode
- Peak flux 20 times GEM at 4 Å with same horizontal divergence

