

Études structurales de composés intermétalliques et leurs hydrures par diffraction des neutrons et rayonnement X

M. Latroche

LCMTR, UPR 209, CNRS, 2-8, rue Henri Dunant, 94320, Thiais, France

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

INTRODUCTION

- Propriétés du système métal hydrogène
- Apport de la diffraction de poudres pour l'étude des composés intermétalliques et leurs hydrures
- Substitution au cuivre dans un composé intermétallique surstoechiométrique LaNi_{5+x}
- > Localisation de l'hydrogène dans des matrices intermétalliques RY2Ni9

Réaction réversible à température et pression ambiante
 Forte augmentation de volume
 pulvérisation

P_{H2}

Substitution au cuivre dans un composé intermétallique surstoechiométrique La(Ni, Cu)_{5+x}

Modifications des propriétés physicochimiques

Sites Ni ⇒ substitutions Métaux 3d Mn, Fe, Co, Cu

Participanti de la comparte de la co

Site La ⇒ Substitutions Terres rares Ce, Pr, Nd, Sm, Gd...

Stoechiométrie \Rightarrow 5+x $0 \le x \le 1$

											N. B. C.		AND	
AL PL		A DE		al	Vi	R								
							X							
St. Col.								K						
AL OF														
AL OF														
		States												
AL PL								N. S. S.	St. B.	St. P.		St. St.		
1. I.		Will B	AN AN				4.4	ST. H.	AL GIN		14.4		4	

Influence de la stæchiométrie dans le système La(Ni,Cu)_{5+x}

Effet bénéfique de la surstœchiométrie sur la durée de vie en cyclage

Notten et al., JALCOM, 210 (1994) 221

Structure cristallographique de LaNi₅

3g

Maille hexagonale Structure type CaCu₅ Groupe d'espace P6/mmm

Rayonnement synchrotron, Effet de dispersion anomale

Affinement conjoint de données neutron et synchrotron La(Ni,Cu)_{5+x}

아무 아이와 아이	the all the	anth anth (HO HI HIVE	art art
Source	Sync	hrotron	Neutron	
	(E	SRF)	(ILL)	
Instrument	BM16	(K _{Ni} edge)	D2B	Here Here
λ (Å)	1.4905	(8318 eV)	1.5932	
Z (e ⁻) f' (e ⁻)	Z _{Ni} =28	f' _{Ni} = -6.10	b _{Ni} = 10.3	
ou b (fm)	Z _{Cu} =29	f' _{Cu} = -2.33	b _{Cu} = 7.72	
	Z _{La} =57	f' _{La} =-1.44	b _{La} = 8.27	
01210012100	ALL ALLAN	5012-N. 012-N	021602	1. 01 - 11. 01 - 1

Quatre compositions étudiées LaNi₄Cu LaNi₄ ₄Cu LaNi₅Cu $LaNi_{45}Cu_{15}$ > Pour toutes les compositions: Préférence du Cu pour le site 2*c* au détriment du 3*q* ♥ Pour les faibles valeurs de x (<0.4) :</p> Les sites 2e et 6ℓ sont occupés par du Ni exclusivement \forall Pour les fortes valeurs de x (\approx 1): Le cuivre occupe partiellement les sites 2e et 6ℓ M. Latroche et al., J. Solid State Chem., 146, (1999) 313.

Localisation de l'hydrogène dans une matrice intermétallique

Nouvelles classes de composés intermétalliques ternaires obtenus par intercroissances entre différentes familles RMn $RM_5 + 2 R'M_2 \Leftrightarrow RR'_2M_9$ Étude des intercroissances entre : LaNi₅ et YNi₂ CeNi5 et YNi2 🗞 Deux nouveaux composés : Lay2Nig Cey2Nig

Propriétés structurales du composé LaY2Ni9

Structure type $PuNi_3$ (*R*-3*m*)

a=5.035 Å, c=24.502 Å Z = 3

 Pu_1 3a(0,0,0); Pu_2 $6c_1$ (0,0,0.140); Ni_1 3b $(0,0,\frac{1}{2});$ Ni_2 $6c_2$ (0,0,0.332); Ni_3 18h $(\frac{1}{2},\frac{1}{2},0.082)$

La en site 3*a* (83%) Y en site 6*c*1

Composé partiellement ordonné

Propriétés structurales des hydrures Lay₂Ni₉D_{12,8} et Cey₂Ni₉D_{7,7}

	Atom	Site	LaY ₂ Ni ₉ D _{12.8}	CeY ₂ Ni ₉ D _{7.7}	
	D ₁ (RM ₃)	6c ₁		0.88	
	D ₂ (M ₄)	6c3	0.24	0.30	
	$\mathbf{D}_{3}\left(\mathbf{R}_{2}\mathbf{M}_{2}\right)$	18h ₁		0.15	
	$\mathbf{D}_4 (\mathbf{R}_2 \mathbf{M}_2)$	18h ₂	0.26	AL CALL	
M ₂	$\mathbf{D}_{5}\left(\mathbf{R}_{2}\mathbf{M}_{2}\right)$	18h ₃	0.11		
	D ₆ (RM ₃)	18h ₆	0.07		
	$\mathbf{D}_{7} (\mathbf{R}_{2} \mathbf{M}_{2})$	36i ₁	0.24	0.35	
	Total RM ₂	D/u.f.	3.02	3.94	
	D ₈ (M ₄)	6c ₄	0.33		
	D ₉ (RM ₃)	18 <i>h</i> ₅	0.52		
VI ₅	D ₁₀ (RM3)	36 <i>i</i> ₂	0.22		
The state	Total RM ₅	D/u.f.	6.4		
	Total D	D/f.u.	12.5	7.9	
de la	Groupe d'espace	$R_p(\%)$ R (%)	2.2 2.7	2.8 3.5	
Alan I	R ∺m	$R_{\rm B}^{\rm op}(\%)$	4.9	8.8	

M. Latroche et al., Journal of Solid State Chem., 177, 7 (2004) 2542.

 $RM_2 hydrogenated \Rightarrow basal plane (ab) cannot expand$ $\Rightarrow expansion along the c axis only$ Interprétation des comportements différents entre les composés au La et au Ce:

Les taux d'occupation des différents blocs RM_5 et RM_2 peuvent être reliés aux taux d'occupation des hydrures des composés binaires correspondants $LaNi_5$, $CeNi_5$, YNi_2 et $CeNi_2$

Struc	ture ck	LaY ₂ Ni	H _{12.8}	CeY ₂ N	i ₉ D _{7.7}
RM ₂	unit	2 x YN	i ₂ H ₃	CeNi ₂ I YNi ₂	H ₄ or H ₃
RM ₅	unit	LaNi ₅]	H _{6.5}	CeNi ₅ I VNi	H ₀ or

Conclusions

Caractérisation structurale des composés intermétalliques : Augmentation du contraste entre éléments voisins Diffraction de neutrons Diffraction anomale (synchrotron)

Caractérisation structurale des hydrures métalliques: Localisation des sites occupés par l'hydrogène Diffraction de neutrons

Comportement en cyclage et vieillissement: Diffraction de neutrons in situ (expériences résolues en temps) Diffraction synchrotron HR (analyse de profils de raie)

>Autres techniques:

Diffusion inélastique, Quasi élastique, Spectroscopie d'absorption X (États électroniques) Rotations de muons, Mesures magnétiques

Remerciements

V. Paul-Boncour

J.-M. Joubert

A. Percheron-Guégan

F. Cuevas

E. Dooryee, A. Fitch B. Oulladiaf F. Bourée-Vigneron

> NEUTRONS FOR SCIENCE

BM16-ESRF

D2B-ILL

LLB-CNRS

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Grenoble Grenoble Saclay

ESRF

L. Schlapbach and R Züttel, Nature, 414 (2001) 353.

Structural properties of the hydride CeY₂Ni₉H_{7.7}

PuNi₃-type structure preserved (Space group *R*-3*m*)

Structure block	Wyckoff position	Site symmetry
RM ₂ unit	6 <i>c</i> ₁	$T - RM_3$
	6 <i>c</i> ₃	T - M ₄
or	18 <i>h</i> ₆	$T - RM_3$
	36 / ₁	$1 - R_2 M_2$
boundary	18 <i>h</i> ₁	$T - R_2 M_2$

Hydrogen located in RM_2 units