

Institut Laue-Langevin, Grenoble (from 1-March-2006) Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay Juan Rodríguez-Carvajal

March 2006

Minimum necessary condition: $\frac{\partial \chi^2}{\partial \beta} = 0$

A Taylor expansion of $y_{ic}(\beta)$ around β_0 allows the application of an iterative process. The shifts to be applied to the parameters at each cycle for improving χ^2 are obtained by solving a linear system of equations (normal equations)

$$A_{kl} = \sum_{i} w_{i} \frac{\partial y_{ic}(\beta_{0})}{\partial \beta_{k}} \frac{\partial y_{ic}(\beta_{0})}{\partial \beta_{l}} \frac{\partial y_{ic}(\beta_{0})}{\partial \beta_{l}}$$
$$b_{k} = \sum_{i} w_{i}(y_{i} - y_{i}) \frac{\partial y_{ic}(\beta_{0})}{\partial \beta_{k}} \frac{\partial y_{ic}(\beta_{0})}{\partial \beta_{k}}$$

March 2006

ACME Construction Construction Lion Brillouin	ĺ								
March 2006 Rencontres LLB-SOLEIL: Diffraction de Poudres	$\chi_{v}^{2} = \frac{\chi_{v}^{2}}{N - P + C}$	$\sigma^{2}(\beta_{k}) = (\mathbf{A}^{-1})_{kk} \chi_{v}^{2}$	next cycle and the process is repeated until a convergence criterion is satisfied. The variance of the adjusted parameters are calculated by the expression:	The new parameters are considered as the starting ones in the	$\boldsymbol{\beta}_1 = \boldsymbol{\beta}_0 + \boldsymbol{\delta}_{\boldsymbol{\beta}_0}$	giving rise to a new set	normal equations are added to the starting parameters	The shifts of the parameters obtained by solving the	Least squares: Gauss-Newton (2)
	$\chi_{v}^{2} = \frac{\chi_{v}}{N - P + C}$	$\sigma^2(\beta_k) = (\mathbf{A}^{-1})_{kk} \mathcal{X}$	next cycle and the process is repeated until criterion is satisfied. The variance of the a are calculated by the expression:	The new parameters are considered as the	$\boldsymbol{\beta}_1 = \boldsymbol{\beta}_0 + \boldsymbol{\delta}_{\boldsymbol{\beta}_0}$	giving rise to a new set	normal equations are added to the sta	The shifts of the parameters obtained	Least squares: Gauss-

Several phases (
$$\phi = 1, n_{\phi}$$
) contributing
to the diffraction pattern
$$\mathcal{Y}_{ci} = \sum_{\phi} S_{\phi} \sum_{h} I_{\phi,h} \ \Omega(T_i - T_{\phi,h}) + b_i$$
Several phases ($\phi = 1, n_{\phi}$) contributing
to several ($p=1, n_p$) diffraction patterns

$$\mathcal{Y}_{ci}^{p} = \sum_{\phi} S_{\phi}^{p} \sum_{\mathbf{h}} I_{\phi,\mathbf{h}}^{p} \Omega^{p} (T_{i} - T_{\phi,\mathbf{h}}) + b_{i}^{p}$$

|--|

- What is the effect of resolution and the peak shape systematic errors in the structural parameters?
- To what extend powder diffraction can provide precise structural results? Are the structural parameters chemically meaningful? (kaj
- good indicators of the quality of a structural model? " How reliable is my refinement? Are the R-factors

correct structural model $N_{r}=39 + bad$ resolution RM (systematic errors): Biased peak shape+

RM (systematic errors): Behaviour of R_{WP} factors versus counting time (biased peak shape)

Chi-square versus counting time (biased peak shape) **RM** (systematic errors): Behaviour of reduced

correct peak shape model, Atom coordinates versus statistics (counting time) $N_{1}=72$

Conclusions (simulations)

(1) For complex structures high statistical accuracy and high resolution p=1/2) should be largely greater than 4-5 to be sure that the structural is required for getting the true parameter values even is the refined model is unbiased. Suggestion: the solvability index ($r = N_{aff}/N_{f}$ for parameters are accurate enough. More experience is needed to establish precise rules.

because their values depend on the quality of the data as well as on the goodness the structural model. The R-factors obtained by a Le Bail fit (2) The absolute value of the profile R-factors has little significance provide the "expected" values for the best structural model.

(3) Well behaved peak shape could be more important than resolution in some cases.

March 2006

Constraints: reduce the number of free parameters + additional observations parameters (rigid body refinements) **Kestraints:** same number of free

March 2006

an easy	
PCR allows	Rigid Bodies
version of Edl	edition of R
New v	

																					ļ	Ύ.	ATOMAL HERCHE
			ж с с	Heline Positions		Hetine B_Iso	FixAll										Ì	Cancel		OK			CONTRACT OF DELIVERY
	ſ	3	<)			>			<	- 111)		>]	L L
			Occ							Chi	-57.93300	-20.48600	44.15800	-75.72900									
				1			1.00					2					1.000						F
										Phi	-35,4880	-41.8710	-47.2710	77.1060			<						1
			8							_	2	2	2	2			Occ	1.000	1.000(1.0000	1.000		•
					L					heta	6.73500	3.65199	7.82201	2.53700					1				
										È	171-	12	17					80577	83061	71433	83613		
										┢	5264 🗸	4645	0316	8187			8	œ	3	сi	-		
				L	L		L			N	0.6	10	0.4	00				L	100	L 00			7
			~								2	2	2	2			Phi	56.656	0.000	0.000	-90.000		
										×	0.8350	0.5979	0.8498	0.8515					1				
			_		L		L					1					ę	05499	00000	00000	80500		
			×								65878	89814	90823	90176			The	170	0	0	23		F
										×	0	Ö	0	Ö				743	367	1692	192		
se 1		•• •	Ntyp			1			∞	toms						ç	œ	3.367	1.386	2.692	1.407		
n: Pha		ums:	Label					tion	ocks:	N.A	15	15	15	15	ŝ	esentatio				3 <u>-</u> 2			
rmatio	ş	of free At			~		+	ck Defini	ıf rigid ble	Name	-	2	¥	2	oordinat	trix Repr	Type	۵	z	0	υ		
is Info	ree Aton	umber o		Atom #1	Atom #2	Atom #	Atom #4	igid Bloc	umber o		#1 E	#2 F	#3 F	#4 F	iternal C	ZMal		#2	#3	£#	#3		

()
· ·
b
$\mathbf{\bigcirc}$

! Data for	PHASE num	ber: 1	==> Curr	ent R_Bra	gg for Pa	ttern# 1	: 4.	95	
C5H4NO (CH3)			 	 		 			
INat Die Any	4 Dr1 Dr0	D*3 Th+ T	rf Tau Ct	х Б <u>11</u> 41	<u>а</u> ша	Nivel Nr	Moro		
120 0 0	0.0 0.0 0	1.0 4		1 0 1	929.0	20 0			
P 41		ds>	ace group	symbol					
!Atom Typ	×	А	N	Д	000	P6	THETA	PHI Spc	
! r/xc/rho	the/yc/ph	i phi/zc/	Z X0	ОХ	20	CHI	P16:SAT	DEG KIND	
PI1 N	0.65457	0.83848	0.58247	3.83061	1.00000	1.00000	-176.735	-35.488 0	#CONN C C 0 1.8
	0.00	00.00	0.00	0.00	0.00	00.00	111.00	121.00	
1.38667	0.000	0.000	0.65878	0.83502	0.65264	-57.933	0.000	1 0	
0.00	0.00	00.00	351.00	361.00	371.00	131.00			
PI2 O	0.65070	0.84127	0.51616	3.71433	1.00000		0 0	0	#CONN C N 0 1.8
	0.00	00.00	00.00	0.00	0.00				
2.69269	0.000	0.000							
0.00	00.00	00.00							
PI3 C	0.68712	0.76540	0.61290	2.83613	1.00000		0 0	0	#CONN O N 0 1.8
	00.00	00.00	0.00	00.00	0.00				
1.40761	58.805	-90.000							
0.00	00.00	0.00							
PI4 C	0.62593	0.90874	0.61882	2.83613	1.00000		0 0	0	#CONN D C 0 1.2
	00.00	00.00	0.00	00.00	0.00				
1.40761	58.805	90.000							
0.00	0.00	0.00							

. . . . March 2006

nts for FullProf?		1: Calculating distance from FullProf	2: Using Bond_Str	importing a CIF file	Both programs	generate a file called	CFML_Restrains.tpc		
How to generate restrain	Bord_Str GU-Interface Run Results Help Exit 는 이 비 행 행 행 행 · · · · · · · · · · · · · · ·	bond-valences, angles and bond-valence calculations March-2005, JRC-LLB)	Code of files pico100_cfl Working D:\Data\Adrian\Francoise Browse	Title CFL-file imported from CIF-file:pico100.cif	SpaceGroup (HM or Hall symbol) F d d Cell parameters in form: 3.91(1) 90 91.2(4) Sigmas are optional V Distances Output Γ Restraints output	Number of Atoms: 11 + Dmax (Dist, Angl) 3.200 0.000 Tolerance(%) 20. Example of atom string: Fe-a Fe+3 0.2311(2) 0.00 0.1234(2) 0.45(1)	Mrite as follows: Label Spec. x/a y/b z/c Biso Occ Atom # 1 01 0 0.62500 0.12500 0.24440(20) 0.00000 Atom # 2 N1 N 0.62500 0.12500 0.31283(13) 0.00000 Atom # 2 N1 N 0.62510 0.12500 0.31283(13) 0.00000 Atom # 3 C1 C 0.2018(3) 0.5578(4) 0.34516(14) 0.00000	Number of user-given Bond-Valence parameters 0. Write "Cation, Anion, d0, B0" as: FE+3 0-2 1.760 0.37	BUSpar #1 BUSpar #1

FullProf?		DIST SIGMA 1.3393 0.0047 2.2874 0.0045	3.3163 0.0041 3.1481 0.0046 2.5023 0.0051	to the PCR file	n CFL format	
aints for]		ТЗ 0.00000 0.00000	0.50000 -0.25000 0.00000	to be pasted in	N1 C1_9.545 C1_24.545 C2_6.644 H1_9.545	: Diffraction de Poudres
e restr		T2 0.00000 -0.50000	-0.25000 -0.25000 -0.50000	Lines	0467 01 0455 01 0413 01 0457 01 0510 01	S LLB-SOLEIL
enerat	estraints:	T1 0.00000 0.50000	0.25000 1.00000 0.50000		935 0.00 738 0.00 627 0.00 808 0.00 228 0.00	Rencontre
v to g	ssible re	ITnum 1 1	7 7 7		X 1.33 X 2.28 X 3.31 X 3.14 X 3.14 X 2.50	March 2006
Ном	st of po	t1 At2 01 N1 01 C1	01 01 01 . H1			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Ĺ	R J	•			RELIEVEN

4-methylpyridine-N-oxide (4MPNO)

At RT, free rotation of methyl around C-C bound.

At 4K, methyl group ~ light quantum rotor. Four tunnelling transitions on INS spectrum linked with local topology (crystal structure).

March 2006

250K structure using free atoms and ADP's

=> WARNING! :

your intensity-dependent parameters could be rather inaccurate Eclectic-view-ratio is TOO LOW (<4), if there is no constraint

ICK WLENCE

p
an
Ĩ
I
t
3
O
Ľ
60
in
Isin
usin
re usin
ure usin
cture usin
ucture usin
tructure usin
structure usin
K structure usin
OK structure usin
00K structure usin
100K structure usin

reflections: r=2.0r=3.6 973 Effective number (account for resolution) of 151.6 264.9 => Total number of "independent" reflections: at level p=1.00 at level p=0.50

r=5.6

March 2006

aboratoire éon Brillouir

SCIENCE NATIONAL DE LA RECHERCHE

10K structure...??

10K Structure – working with synchrotron data or with high resolution low-Q neutron data (G4.2, λ≈3.13Å

a = b = 15.410Å, c = 19.680Å, tetragonal! derived from subgroups of $I4_{l}/amd$: $P4_{l}$, Positions and orientations of molecules Simulated Annealing with FullProf Cell parameters from DicVol: Possible space groups : *P* -4 *m* 2, etc...

March 2006

Positions and orientations of the 8 molecules can be successfully determined from the synchrotron data or low-Q high resolution neutron data.

10K structure : methyl rotors

Neutron data shows that D atoms are localised and that rotors order at low temperature

C

aboratoire on Brillouir

NEUTRONS FOR SCIENCE

- resolution, absence of systematic errors and solvability Refinement of complex structures requires very good indices much higher than 6-7
- lost of information in powder diffraction compared to tedious than solving the structure due to the intrinsic The practice the refinement may be more difficult and single crystals
- Tt is better to use constraints/restraints even if the **Rietveld refinement is worse**

