Laboratoire Léon Brillouin

UMR12 CEA-CNRS, Bât. 563 CEA Saclay

91191 Gif sur Yvette Cedex, France

+33-169085241 llb-sec@cea.fr

BD diffusons les neutrons

Les sujets de thèses

3 sujets IRAMIS//LLB

Dernière mise à jour : 16-06-2019


««

• Matière molle et fluides complexes

 

Batterie au Li-métal à électrolyte hybride avec conduction par ions lithium uniquement

SL-DRF-19-0554

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe de Diffusion Neutron Petits Angles

Saclay

Contact :

Jacques JESTIN

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Jacques JESTIN

CNRS - LLB01/Laboratoire de Diffusion Neutronique

0661476825

Directeur de thèse :

Jacques JESTIN

CNRS - LLB01/Laboratoire de Diffusion Neutronique

0661476825

Aujourd'hui et dans les années à venir, le développement des batteries à haute performance, sûre et à faible coût est la clé pour l'expansion des industries et des marchés importants tels que les véhicules électriques et les énergies renouvelables. La technologie de batterie au lithium-métal polymère (LMP) est sans doute la plus attrayante. Le lithium métal est l’anode de choix avec sa capacité spécifique 10 fois plus élevée que celle utilisée dans les batteries Li-ion, pour produire des batteries de très haute densité d’énergie. De plus, le lithium métal est le seul choix pour profiter des capacités élevées des technologies lithium-air et lithium-soufre. Cependant, les électrolytes polymères secs ne fonctionnent qu’à 80°C, une température où les propriétés mécaniques sont insuffisantes et leur fenêtre de stabilité électrochimique est limitée. Comme pour les électrolytes liquides, la fraction de charge portée par Li+ est faible (t+< 0.2), ce qui limite les performances électriques.



Dans ce contexte, le principal objectif de la thèse est de développer une batterie LMP capable de fonctionner à température ambiante sur un grand nombre de cycles (> 1000). Pour atteindre cet objectif, nous proposons une approche multidisciplinaire réunissant différentes compétences dans les domaines de chimie organique et polymère, de matériaux hybrides, de transport des ions, d’électrochimie et de stockage électrochimique pour concevoir un électrolyte solide multifonctionnel « révolutionnaire ». Cet électrolyte réunit les différentes propriétés antagonistes telles que une conductivité ionique élevée à température ambiante, des propriétés mécaniques élevées, une grande stabilité électrochimique des interfaces.



Le projet de thèse est donc consacré à :

•La fonctionnalisation de la surface des nano-charges, par exemple oligomères de silsesquioxanes polyédriques (POSS), silice colloïdale ou nano-fibres de cellulose, avec les courtes chaines de polyoxyéthylènes (POE) amorphe et/ou avec le sel de lithium à base de l’anion TFSI .

•La formulation des électrolytes hybrides auto-dopés par le mélange de nano-charges fonctionnalisées avec une matrice conducteur d’ion Li+ (par exemple les POE réticulés).

•La caractérisation approfondie des électrolytes nano-hybrides préparés qui comprend la dispersion des nano-charges dans la matrice de polymère, la dynamique (macro)moléculaire et les propriétés macroscopiques (transport et mécanique). Ces caractérisations permettent d’établir la relation entre la structure/composition et les propriétés macroscopiques.

•La construction d’un prototype de batterie LMP pour quantifier les nouveaux électrolytes nano-hybrides.



Les électrolytes hybrides auto-dopés proposés auront (i) une valeur de tLi+ proche de 1 parce que l’anion est greffé de manière covalente aux nano-charges. Li+ est le seul ion mobile dans le milieu ; (ii) une conductivité ionique élevée (par exemple =10-4 S/cm à température ambiante) grâce aux mobilités élevées des chaines courtes de POE greffées à la surface de nano-charges ainsi qu’à l’emploi d’un sel lithium hautement dissocié ; (iii) des propriétés mécaniques suffisantes pour contrer la croissance dendritique grâce au rôle de renfort des nano-charges et au réseau réticulé de la matrice conducteur d’ion ; (iv) une stabilité électrochimique élevée jusqu’à 5V vs Li+/Li (potentiel nécessaire pour utiliser les matériaux actifs de haut potentiel dans l’assemblage de la batterie) du fait du greffage de l’anion ; (v) une stabilité thermique améliorée pour la sécurité grâce à la présence de nano-charges, en particulier les POSS.



Ce projet sera mené en collaboration étroite entre le Laboratoire Léon Brillouin (DRF/IRAMIS) au CEA Saclay, le Laboratoire d’Electrochimie et de physicochimie des matériaux et des interfaces (LEPMI/Grenoble INP) à Grenoble et l’Institut de Chimie Radicalaire (Université Aix-Marseille) de Marseille.

Batteries "lithium métal polymère" : Vers un fonctionnement à température ambiante

SL-DRF-19-0563

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe Biologie et Systèmes Désordonnés

Saclay

Contact :

Jean-Marc ZANOTTI

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Jean-Marc ZANOTTI

CEA - DRF/IRAMIS/LLB/GBSD

+33(0)476207582

Directeur de thèse :

Jean-Marc ZANOTTI

CEA - DRF/IRAMIS/LLB/GBSD

+33(0)476207582

Page perso : http://iramis.cea.fr/Pisp/jean-marc.zanotti/

Labo : http://www-llb.cea.fr/

Voir aussi : http://liten.cea.fr/cea-tech/liten/Pages/Accueil.aspx

Ce travail de doctorat propose de mettre en œuvre une méthode originale pour permettre l’utilisation de batteries "lithium métal polymère" à température ambiante.

Cet objectif sera atteint par la mise en conjonction de trois effets :

i) le confinement nanométrique de l’électrolyte polymère (Poly(Oxyde d’Éthylène) (PEO) + sel de lithium) au sein de membranes à base de tapis de NanoTubes de Carbone Alignés Verticalement (VA-NTC).

ii) l’utilisation de POE de faible masse molaire.

iii) la conduction ionique unidimensionnelle.



Les propriétés de transport des ions lithium et la conduction ionique seront contrôlées par deux distances caractéristiques : le diamètre des pores (1-4 nm) et la longueur totale des VA-NTC (de 10 à 500 µm). La compréhension des propriétés de transport sur des distances différant de plusieurs ordres de grandeur appelle naturellement à une approche multi-échelles.

Pour son volet fondamental, l'objectif premier de cette étude est de développer une approche expérimentale multi-échelles pour appréhender de façon globale la mobilité exaltée en confinement 1D.

“Smart membranes” pour batteries Lithium-Métal-Polymère.

SL-DRF-19-0850

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe Biologie et Systèmes Désordonnés

Saclay

Contact :

Quentin BERROD

Jean-Marc ZANOTTI

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Quentin BERROD

CNRS - DRF/INAC/SyMMES/STEP

(+33)(0)438786425

Directeur de thèse :

Jean-Marc ZANOTTI

CEA - DRF/IRAMIS/LLB/GBSD

+33(0)476207582

Page perso : http://iramis.cea.fr/Pisp/jean-marc.zanotti/

Labo : http://www-llb.cea.fr/

Voir aussi : https://icr-amu.cnrs.fr/

Le sujet propose une voie originale pour permettre l’utilisation des batteries « lithium métal polymère » à température ambiante. Cet objectif sera atteint par la mise en conjonction de trois effets : i) le confinement nanométrique de l’électrolyte au sein de membranes à base de tapis de NanoTubes de Carbone (NTC) alignés verticalement, ii) l’utilisation de POE de faible masse molaire et iii) la conduction ionique unidimensionnelle.



Le sujet passe par la synthèse d’une SMART membrane : le greffage de chaînes de POE de longueur nanométrique sur l’une des parois du tapis de NTC. Cet aspect est essentiel pour s’affranchir du caractère conducteur électronique des NTC. Par ailleurs, la conformation des chaînes greffées à l’entrée des NTC (chaînes étendues ou en pelote) dépendra fortement de l’environnement physico-chimique (pH, solvant, température …). Ces smart membranes, présentent donc aussi un intérêt en tant que "nano-valves" stimulables ou membranes de filtration.

 

Retour en haut