Basics on Diffraction

Pierre Becker

Ecole Centrale Paris SPMS CNRS Lab pierre.becker@ecp.fr

New position : Augure of Jupiter Calchas
«Le cornichon (piclke) est confit dans
 du vinaigre, je suis confident du Roi»

Scattering and diffraction of angstrom wavelength waves (X Ray, electrons, neutrons) is the key to study of atomic structure of condensed matter.

High resolution scattering allows for understanding vibrational, electronic and magnetic behaviour of materials: key importance of combined X, N, E studies

New pulsed sources allow for a time dependent study for out of equilibrium systems

I shall focus on neutron scattering, but keep in mind the importance of combined studies

Outline

Nuclear Diffraction by a stationary target

- Case of a crystal. Comparison with Xray and Electron diffraction
- Taking thermal motion into account : total/Bragg scattering

Inelastic neutron scattering and study of phonons

Magnetic scattering of neutrons
-Basics
-Spin polarized diffraction: access to spin density of materials:
complementarity with Xray high resolution scattering
Reality of crystals: extinction

Scattering cross section

X Rays, electrons, neutrons

$$
\frac{\partial \sigma}{\partial \Omega}=R^{2} \frac{F\left(\vec{u}, \vec{u}_{0}\right)}{F_{0}}
$$

Case of energy sensitive detection

$$
\delta N\left(\vec{u}, \vec{u}_{0}\right)=F_{0} \frac{\partial^{2} \sigma}{\partial \Omega \partial E} \delta \Omega_{d} \delta E_{d}
$$

- Non relativistic particles

$$
F_{i n c}=\frac{\hbar \kappa_{0}}{m}\left|\Phi_{o}\right|^{2} \quad F_{d i f f}=\frac{\hbar \kappa_{f}}{m}\left|\Phi_{f}\right|^{2}
$$

$$
\frac{\partial \sigma}{\partial \Omega}=R^{2} \frac{\kappa_{f}}{\kappa_{0}} \frac{\left|\Phi_{f}\right|^{2}}{\left|\Phi_{o}\right|^{2}}
$$

- Photons: prefactor includes polarization factor of EM beam

Scattering by a stationary target:

Elementary scatterer:

$$
\Phi_{0}\left(\vec{r}_{j}, t\right)=\Phi_{0} e^{i\left(\vec{k}_{0} \cdot \vec{r}_{j}-q_{0} t\right)} \quad \vec{R}_{j}=\vec{R}-\vec{r}_{j} \quad r_{j} \ll R
$$

Huyghens Fresnel principle: elastic scattering

$$
\varphi_{j}(\vec{r}, t) \cong \Phi_{0} \frac{e^{i\left(\vec{k}_{0} \vec{r}_{j}-\omega_{0} t\right)}}{\left|\vec{R}-\vec{r}_{j}\right|}\left\{a_{j} e^{i k_{0}\left|\vec{R}-\vec{r}_{j}\right|}\right\}
$$

Long distance scattering

$$
R_{j} \cong \stackrel{\downarrow}{\equiv}-\vec{u} \cdot \vec{r}_{j}
$$

Complex target:

$$
\begin{gathered}
\Phi_{f}(\vec{r}, t)=\Phi_{o} \frac{e^{i\left(k_{o} R-\omega_{o} t\right)}}{R} A(\vec{Q}) \xrightarrow{\longrightarrow} A(\vec{Q})=\sum_{j=1}^{N} b_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text {elastic }}=\mid A(\vec{Q})^{2}
\end{gathered}
$$

Scattering function:

$$
\begin{array}{r}
n(\vec{r})=\sum_{j} b_{j} \delta\left(\vec{r}-\vec{r}_{j}\right) \\
A(\vec{Q})=\int n(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \quad n(\vec{r})=\frac{1}{(2 \pi)^{3}} \int A(\vec{Q}) e^{-i \vec{Q} \cdot \vec{r}} d \vec{Q}
\end{array}
$$

Crystalline target (periodic scattering function)

$$
\begin{array}{rlrlr}
n_{0}(\vec{r}) & =n(\vec{r}) & & \text { if } \vec{r} \in \text { unit cell } & n(\vec{r})=\sum_{L} n_{0}(\vec{r}-\vec{L}) \\
& =0 & & \text { otherwise } &
\end{array}
$$

One defines the structure factor :

$$
F(\vec{Q})=\iiint_{\text {winicell }} n_{0}(\vec{r}) e^{i \bar{Q} \cdot \vec{r}} d \vec{r}
$$

$$
A(\vec{Q})=F(\vec{Q})\left[\sum_{\bar{L}} e^{i \vec{Q} \cdot \bar{L}}\right]=\frac{(2 \pi)^{3}}{\mathrm{~V}} F(\vec{Q})\left[\sum_{\vec{H}} \delta(\vec{Q}-\vec{H})\right]
$$

For a finite crystal, with N unit cells

$$
A(\vec{H})=N F(\vec{H})
$$

Coherent scattering .

Bragg diffraction conditions.

$\hbar \vec{Q} \quad$ is the momentum transferred to the target by the wave.

For a finite crystal, there is an opening angle around Bragg condition, of order d / L and one must integrate the peak intensity

Notice that the scattered wave has a phase shift of $\pi / 2$ with respect to the incident wave

Case of X Rays

Elementary scatterers are electrons, all undiscernable
For a $1 \mathrm{~A}^{0}$ wavelength, the energy of the photon is about $\mathbf{1 2 0 0 0 e v}$, much higher than cohesive energies in a material

Electron charge density is the effective « target» :

$$
A_{X}(\vec{Q})=\left(r_{e}\right) \int \rho_{e}(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Independent atom approximation

$$
\begin{aligned}
& \rho_{0, e}(\vec{r}) \approx \sum_{n} \rho_{a t, n}\left(\vec{r}-\vec{R}_{n}\right) \\
& A_{0}(\vec{Q})=\sum_{n} f_{n}(Q) e^{i \bar{Q} \cdot \bar{R}_{n}}
\end{aligned}
$$

Form factors at low scattering angle are proportional to atomic number

They decay as the inverse of atomic radius

$$
b \equiv r_{0}=\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}=0,2810^{-12} \mathrm{~cm}
$$

$$
C=\cos ^{2}(2 \theta) \cos ^{2}(\alpha)+\sin ^{2}(\alpha)
$$

$$
\frac{\partial \sigma}{\partial \Omega}=r_{0}^{2} C\left|A_{X}(\vec{Q})\right|^{2}
$$

Neutron waves

Neutrons result from fission of U^{235} and are produced with an energy > $\mathbf{1 M e v}$ Moderation via collisions with $\mathrm{D}_{2} \mathrm{O}$, liquid hydrogen, graphite
Neutron life time is about $900 \mathrm{sec} \quad n \Rightarrow$ proton + electron $+\gamma$ photon Also spallation sources, producing pulsed neutrons

$$
\begin{gathered}
\text { Wave-particle duality } \\
\qquad \begin{array}{ll}
& E=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{h^{2}}{2 m \lambda^{2}} \\
\lambda\left(A^{0}\right)=\frac{0.286}{\sqrt{E(e v))}} & \text { For } \lambda=1 \AA \\
E(e v)=\frac{0.082}{\lambda^{2}} & \mathrm{E}=80 \mathrm{meV} \\
\lambda=\frac{30.8}{\sqrt{T}} & \mathrm{~T}=950 \mathrm{~K} \\
& \\
& \mathrm{v}=4000 \mathrm{~ms}^{-1}
\end{array}
\end{gathered}
$$

$$
\boldsymbol{\mu}_{\mathrm{n}}=-\gamma \mu_{\mathrm{N}} \boldsymbol{\sigma} \quad \mu_{\mathrm{N}}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}_{\mathrm{p}}} \quad \gamma=1.913
$$

One talks about « thermal Neutrons », behaving like a perfect gaz flow

It is necessary to monochromatise the beam, $\lambda \approx \lambda_{0}$, which also produces significant beam with $\lambda / 2$ wavelength

The speed of neutrons is low enough to allow for time of flight detection, besides usual selective absorption

Basic interaction with matter is nuclear interaction, which for study of materials, can be considered as ponctual (range of fm)

$$
V_{n}(\vec{r})=\frac{2 \pi \hbar^{2}}{m} b \delta(\vec{r}-\vec{R})
$$

b is called the scattering length by
a nucleus, of the order of $10^{-12} \mathrm{~cm}$

Very significant complementarity towards XRays

Let's consider an incident neutron wave directed towards a nucleus located at origin.

$$
\phi_{0} \approx e^{i \vec{k}_{0} \cdot \vec{r}}
$$

When reaching the static nucleus, the neutron wave satisfies the Schrodinger equation

$$
\left[-\frac{\hbar^{2}}{2 m} \Delta+\frac{\hbar^{2}}{2 m} b \boldsymbol{\delta}(\vec{r})\right] \phi=E \boldsymbol{\phi}=\frac{\hbar^{2}}{2 m} k^{2} \boldsymbol{\phi}
$$

It can be re-written as

$$
\left[\Delta+k^{2}\right] \phi=b \delta(\vec{r}) \phi
$$

After collision, the neutron is scattered with the same energy, and can be described as a spherical wave. One can show (1rst Born approximation, since b is very small compared to λ) that the proper solution (Green function) is

$$
G(r) \approx b \frac{e^{i k r}}{r}
$$

$\left[\Delta+k^{2}\right] G=4 \pi \delta(\vec{r}) \quad G(r) \approx b \frac{e^{i k r}}{r}$

Complex target

$$
\left[\Delta+k^{2}\right] \psi=4 \pi n(\vec{r}) \psi
$$

$$
\psi_{f}(\vec{R})=-\int \frac{e^{i k \mid \vec{R}-\vec{r}^{\prime}} \mid}{\left|\vec{R}-\vec{r}^{\prime}\right|} n\left(\vec{r}^{\prime}\right) e^{i \vec{k}_{0} \cdot \vec{r}^{\prime}} d \vec{r}^{\prime}
$$

$$
\psi_{f}=-\frac{e^{i k R}}{R} A_{N, e}(\vec{Q})=\frac{m}{2 \pi \hbar^{2}} \frac{e^{i k R}}{R} \int V(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Generalization to electron scattering and beyond

$$
\begin{aligned}
& V_{N}(\vec{r})=\frac{2 \pi \hbar^{2}}{m} \sum_{j} b_{j} \delta\left(\vec{r}-\vec{R}_{j}\right) \\
& \Delta V_{e}(\vec{r})=-\frac{1}{\varepsilon_{0}}\left\{\rho_{c}(\vec{r})-\rho_{e}(\vec{r})\right\}
\end{aligned}
$$

$$
A_{N}(\vec{Q})=\int n(\vec{r}) e^{i \bar{Q} \cdot \vec{r}} d \vec{r}
$$

$$
A_{e}(\vec{Q})=\frac{m e^{2}}{2 \pi \hbar^{2} \varepsilon_{0}} \frac{\left\{A_{c}(\vec{Q})-A_{X}(\vec{Q})\right\}}{Q^{2}}
$$

$$
A_{c}(\vec{Q})=\sum_{j} Z_{j} e^{i \vec{\cdot} \cdot \bar{R}_{j}}
$$

$$
A_{X}[\vec{Q})=\int \rho_{e}(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

It will also apply to magnetic interactions of neutrons with matter Important complementarity of Xray / Electron scattering

For a stationary crystal, forgetting about surface effects...

$$
\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text {elastic }}=|A(\vec{H})|^{2}=N^{2}|F(\vec{H})|^{2}
$$

Phase problem remains to retrieve the scattering density

$$
n(\vec{r})=\frac{1}{V} \sum_{\vec{H}} F(\vec{H}) e^{-i \vec{H} \cdot \vec{r}}
$$

Only the Patterson function can be obtained directly from experiment

$$
\begin{gathered}
\left.P(\vec{r})=\frac{1}{V} \sum_{\vec{H}} \right\rvert\, F(\vec{H})^{2} e^{-i \vec{H} \cdot \vec{r}}=n * n \\
P(\vec{r})=\sum_{i, j \in \text { unitecll }} b_{i} b_{j} \delta\left(\vec{r}-\vec{R}_{i j}\right)
\end{gathered}
$$

Also direct methods are available for getting the phases Peaks of $n^{2}(\vec{r})$ have same location as those of $n(\vec{r})$

Probability relations among the phases of some triplets $F(\vec{H}),[F(\vec{K}) F(\vec{H}-\vec{K})]$

Great thanks to David Sayre, Jerome Karle and Herbert Hauptman

Due to finite size, scattering occurs out of exact Bragg condition

$$
\vec{Q}=\vec{H}+\vec{q}
$$

For a given position of the crystal (ε), the cross section per unit volume is $\sigma(\varepsilon)$, and after rotation of the crystal, one gets the total «kinematic» diffraction cross section per unit volume :
$\mathrm{d}^{3} q=(2 \pi)^{3} \frac{\sin 2 \theta}{\lambda^{3}} \mathrm{~d} \Omega \mathrm{~d} \varepsilon$

$$
\begin{equation*}
Q_{\text {kinematic }}=\int \sigma(\varepsilon) d \varepsilon=\left|\frac{F}{V}\right|^{2} \frac{\lambda^{3}}{\sin 2 \theta} \tag{-1}
\end{equation*}
$$

Diagramme de diffraction des neutrons du BaTiO_{3} à 401 K : spectromètre 3 T2 LLB

There are resolution limits due to the fact that

$$
|\vec{H}| \leq \frac{4 \pi}{\lambda}
$$

There can be a mixture of isotopes in a compound, and moreover there can be a spin coupling between the neutron and scattering nucleus. As a consequence, the scattering length of a given atom can vary from one site to another one

$$
A(\vec{Q})=\sum_{\vec{L}} \sum_{j} b_{j L} e^{i \vec{Q} \cdot\left(\vec{R}_{j}+\vec{L}\right)}
$$

The total cross-section is written as the sum of a coherent and an incoherent part

$$
\begin{aligned}
\left\langle b_{j} b_{k}\right\rangle & =\left\langle b_{j}\right\rangle\left\langle b_{k}\right\rangle \quad \text { if } j \neq k \\
\left\langle b_{j}^{2}\right\rangle & =\left\langle b_{j}\right\rangle^{2}+\left[\left\langle b_{j}^{2}\right\rangle-\left\langle b_{j}\right\rangle^{2}\right]
\end{aligned}
$$

incoherent

$$
b=b_{N}+2 B \vec{\sigma} \cdot \vec{I} \quad \begin{array}{ll}
\text { Neutron : } M_{\mathrm{N}}=-\gamma\left(2 \mu_{\mathrm{N}}\right) \sigma & \mu_{\mathrm{B}}=\frac{\mathrm{e} \hbar}{2 \mathrm{~m}}=9.27410^{-24} \mathrm{JT}^{-1} \\
& \text { Electron : } M_{\mathrm{S}}=-\mathrm{g} \mu_{\mathrm{B}} S
\end{array} \mu_{\mathrm{N}}=\frac{\mathrm{e} \hbar}{2 \mathrm{M}}=\mu_{\mathrm{B}} / 1836 \mathrm{t} .
$$

$\langle b\rangle=\frac{I+1}{2 I+1} b_{+}+\frac{I}{2 I+1} b_{-}$

$$
\left\langle b^{2}\right\rangle-\langle b\rangle^{2}=\left\langle b_{N}^{2}\right\rangle-\left\langle b_{N}\right\rangle^{2}+\left\langle B^{2} I(I+1)\right\rangle
$$

One gets, besides a coherent Bragg diffraction, where the appropriate scattering length for a nucleus is $\left\langle b_{j}\right\rangle$ an incoherent added intensity

$$
\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text {inc }}=N \sum_{j}\left[\left\langle b_{j}^{2}\right\rangle-\left\langle b_{j}\right\rangle^{2}\right]
$$

Diffraction experiments occur on systems at a given tamperature. This creates vibrational disorder of atomic positions. In crystals, those vibrations are phonons

$$
\begin{gathered}
A(\vec{Q})=\sum_{\vec{L}} \sum_{n} b_{n} e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{L}\right)} e^{i \vec{Q} \cdot \vec{u}_{n L}} \\
\left.\left.\langle |\right|^{2}\right\rangle=|\langle A\rangle|^{2}+\Delta A^{2} \\
\text { Bragg } \\
\text { diffraction } \quad \begin{array}{l}
\text { Thermal diffuse } \\
\text { scattering }
\end{array} \\
F(\vec{H})=\sum_{n}\left\langle b_{n}\right\rangle e^{i \vec{H} \cdot \vec{R}_{n}} W_{n} \quad \text { Debye Waller factor }
\end{gathered}
$$

In the harmonic approximation, one can show exactly

$$
W_{n}=e^{-\frac{1}{2}\left(\left(\bar{H} \cdot \bar{u}_{n}\right)^{2}\right)}
$$

For a given frequency

$$
W_{n} \approx e^{-\frac{2 \pi^{2}}{2}\left(\frac{\sin \theta}{\lambda}\right)^{2} \frac{k T}{m \omega^{2}}}
$$

Debye Waller factor lowers signal for high T, large scattering angle, light atoms, with major contribution from acoustic frequencies.

Anharmonic motion can also be considered
For systems made of molecules or for instance organic fragments linked to a protein, one can model vibrations in terms of intra-molecular (high frequency) and inter-molecular acoustic vibrations !

Static atomic disorder can also lead to a lowering factor, not dependent on T (see extinction !!!)

$$
\left\langle e^{i \vec{H} \cdot \vec{u}_{n}}\right\rangle
$$

The other term $\left\langle\Delta \mathrm{A}^{2}\right\rangle$ corresponds to thermal diffuse scattering. See later it's frequency analysis. If no energy analysis is done, it is a diffuse contribution, which is considered as part of background

Parameters progressively introduced in the structure factor and the scattering density function can be adjusted by a refinement of observed data towards the proposed model, via a minimisation with respect to adjustable key parameters (positions, thermal parameters...)

$$
R=\sum_{H} \frac{\left[I_{o b s}(\vec{H})-I_{\bmod }(\vec{H})\right]^{2}}{\sigma_{H}^{2}}
$$

Another approach is the maximum entropy method

Besides crystals, many applications to aperiodic structures, disordered solids (glass) and liquids

Model refinement can be very critical

Quantum approach

Fermi Golden Rule

$$
\frac{\partial^{2} \sigma}{\partial \Omega \partial E_{f}}=\frac{k_{f}}{k_{0}} \Sigma(\vec{Q}, \omega)
$$

$$
\begin{aligned}
& \Sigma(\overline{\underline{Q}}, \omega)=\sum_{f}\left|\left\langle\psi_{0} \mid A(\bar{Q}) \psi_{f}\right\rangle\right\rangle^{2} \delta\left(\varepsilon_{f}-\varepsilon_{0}-\hbar \omega\right)
\end{aligned}
$$

$$
\begin{aligned}
& I(\vec{Q}, t)=\left\langle\mathrm{A}(\vec{Q}, 0) \mathrm{A}^{*}(\vec{Q}, t)\right\rangle
\end{aligned}
$$

Space and time correlation function

$$
\begin{aligned}
& \Sigma(\vec{Q}, \omega)=\frac{1}{2 \pi \hbar} \int_{0}^{\infty} I(\vec{Q}, t) e^{-i \omega t} d t \\
& I(\vec{Q}, t)=\int \Gamma(\vec{r}, t) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& \Gamma(\vec{r}, t)=\int\left\langle n\left(\vec{r}^{\prime}, 0\right) n\left(\vec{r}+\vec{r}^{\prime}, t\right)\right\rangle d \vec{r}^{\prime}
\end{aligned}
$$

Most general situation

System and beam in a statistical initial state

$$
\begin{aligned}
\Sigma(\vec{Q}, \omega) & \left.=\sum_{0} p_{0} \sum_{f}\left|\left\langle\psi_{0}\right| \tilde{A}(\vec{Q})\right| \psi_{f}\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{0}-\varepsilon_{f}-\hbar \omega\right) \\
& \left.\left.=\sum_{0} p_{0} \sum_{f}\left|\left\langle\psi_{0}, \vec{k}_{0}\right| \tilde{N}(\vec{r})\right| \psi_{f}, \vec{k}_{f}\right\rangle\right\rangle^{2} \delta\left(\varepsilon_{0}-\varepsilon_{f}-\hbar \omega\right)
\end{aligned}
$$

$$
E_{f}+\varepsilon_{f}=E_{0}+\varepsilon_{0}
$$

(a) $\omega>0$

$\left.\begin{array}{c}\text { Photons } \\ \left(\lambda_{0} \approx 1 \AA A\right)\end{array}\right) \frac{d k}{k_{0}} \approx \frac{d(\hbar \omega)}{10^{4} e V}$
$\vec{Q}=\vec{k}_{o}-\vec{k}_{f}$

(b) $\omega<0$

Neutrons
$\left(\lambda_{0} \approx 1 \AA\right)$$\frac{d k}{k_{0}} \approx \frac{d(\hbar \omega)}{1 / 40^{\mathrm{eV}}}$

Total scattering

$$
\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text {total }}=\int \frac{\partial^{2} \sigma}{\partial \Omega \partial E_{f}} d E_{f}=\hbar \int_{-\infty}^{\omega_{0}} \frac{k_{f}}{k_{0}} \Sigma(\vec{Q}, \omega) d \omega
$$

$$
\omega=\omega_{0}-\omega_{f} \leq \omega_{0}
$$ $\begin{aligned} & \text { Static }\end{aligned}\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text {total }}=\int \frac{\partial^{2} \sigma}{\partial \Omega \partial E_{f}} d E_{f}=\hbar \int_{-\phi}^{\omega_{0}} \frac{k_{f}}{k_{0}} \Sigma(\vec{Q}, \omega) d \omega$

Elastic scattering

$$
\begin{aligned}
S_{\text {elassic }}(\vec{Q}) & \left.=\sum_{0} p_{0}\left|\left\langle\psi_{0}\right| \tilde{A}(\vec{Q})\right| \psi_{0}\right\rangle\left.\right|^{2} \\
S_{\text {tot }}(\vec{Q}) & =\sum_{0} p_{0}\left\langle\psi_{0}\right| \tilde{A}(\vec{Q}) \tilde{A}^{*}(\vec{Q})\left|\psi_{0}\right\rangle
\end{aligned}
$$

Total scattering

Phonon scattering

Consider inelastic scattering for a model crystal with one atom/cell, where the system will go from vibrational state ψ_{n} to ψ_{m}

$$
\begin{aligned}
A(\vec{Q})=b \sum_{\vec{l}} e^{i \vec{Q} \cdot\left(\vec{l}+\vec{u}_{l}\right)} & \approx b\left[\sum_{\vec{l}} e^{i \vec{Q} \cdot \vec{l}}\right]+b\left[\sum_{\vec{l}}\left(\vec{Q} \cdot \vec{u}_{l}\right) e^{i \vec{Q} \cdot \vec{l}}\right]+\ldots \\
& =\mathrm{A}_{0}+\mathrm{A}
\end{aligned}
$$

Displacement can be decomposed in phonons. We simplify by considering only one phonon, of wave vector \boldsymbol{q}

$$
\begin{aligned}
\vec{u}_{l} & =\frac{1}{\sqrt{N m}}\left(\xi \vec{\varepsilon} e^{i \bar{q} . \vec{l}}+c . c .\right) \\
\langle\varepsilon\rangle & \left.=\hbar \omega(\vec{q})(\bar{n}+1 / 2)=\left.\frac{1}{2} \omega^{2}(\vec{q})\langle | \xi\right|^{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
A(\vec{Q})=b \sum_{i} e^{i \bar{Q} \cdot\left(\vec{l}+\vec{u}_{l}\right)} & \approx b\left[\sum_{\vec{i}} e^{i \bar{Q} \cdot \bar{l}}\right]+b\left[\sum_{\hat{i}}\left(\vec{Q} \cdot \vec{u}_{l}\right) e^{i \bar{Q} \cdot \bar{l}}\right]+\ldots . \\
& =\mathrm{A}_{0}+\mathrm{A}
\end{aligned}
$$

$$
\left\langle\psi_{n}\right| A_{0}\left|\psi_{m}\right\rangle=0 \quad \text { for } m \neq n
$$

$$
\begin{gathered}
\left\langle\psi_{n}\right| A_{1}\left|\psi_{m}\right\rangle \neq 0 \longrightarrow \text { for } m=n \pm 1 \\
\varepsilon_{m}=\varepsilon_{n} \pm \hbar \omega \\
E_{f}=E_{0} \mp \hbar \omega \quad \frac{\hbar^{2} k_{f}^{2}}{2 m_{n}}=\frac{\hbar^{2} k_{0}^{2}}{2 m_{n}} \mp \hbar \omega
\end{gathered}
$$

Creation or absorption of phonon

Energy change can be very pronounced with neutrons, very small with X Rays (need for very high resolution

$$
\left\langle\psi_{n}\right| A\left|\psi_{n \pm 1}\right\rangle=b \frac{\vec{Q} \cdot \vec{\varepsilon}}{\sqrt{N m}}\left\langle\psi_{n}\right| \xi\left|\psi_{n \pm 1}\right\rangle\left\{\sum_{\vec{l}} e^{i(\vec{Q} \pm \vec{q}) \cdot \vec{l}}\right\}
$$

$$
\left\langle\psi_{n}\right| A\left|\psi_{n \pm 1}\right\rangle=b \frac{\vec{Q} \cdot \vec{\varepsilon}}{\sqrt{N m}}\left\langle\psi_{n}\right| \xi\left|\psi_{n \pm 1}\right\rangle\left\{\sum_{\vec{i}} e^{i(\vec{Q} \pm \vec{q}) \cdot \vec{l}}\right\}
$$

One gets diffraction condition (coherent effect)

$$
\vec{Q} \pm \vec{q}=\vec{H}
$$

In a given scattering direction thus, with energy analyser, one gets ω, $\mathbf{k}_{\mathbf{f}}$, and therefore $\mathbf{q}, \omega(\mathbf{q})$

Phonon dispersion relation in gold

J. W. Lynn, H. G. Smith, and R. M. Nicklow, Phys. Rev. B 8, 3493 (1973).

Key application of neutrons, in particular for phase transitions

Neutron Magnetic scattering

$\vec{\sigma} \Rightarrow$ neutron spin in units of $\hbar / 2 \Rightarrow \sigma_{\mathrm{z}}= \pm 1$

$$
\begin{aligned}
\vec{\mu} & =\frac{1}{V} \int \vec{m}(\vec{r}) d \vec{r} \\
\vec{m}(\vec{r}) & =\vec{m}_{s}(\vec{r})+\vec{m}_{l}(\vec{r})
\end{aligned}
$$

Magnetic scattering occurs through dipolar interaction between neutron and electron magnetic moments

$$
\begin{array}{rc}
V_{m}(\vec{r})=-\vec{\mu}_{n} \cdot \vec{B} & \vec{A}=\sum_{j} \vec{A}_{j} \\
\vec{B}=\vec{\nabla} \times \vec{A} & \vec{A}_{j}=\frac{\mu_{0}}{4 \pi} \vec{\nabla}\left(\frac{1}{R_{j}}\right) \times \vec{\mu}_{j}
\end{array}
$$

Spin component

$$
\begin{aligned}
& F_{M s}(\vec{Q})=\vec{\sigma} . \vec{\Phi}_{s}(\vec{Q}) \\
& \vec{\Phi}_{S}=r_{0} \hat{q} \times \vec{M}_{S}(\vec{Q}) \times \hat{q}=r_{0} \vec{M}_{\perp S}(\vec{Q}) \\
& r_{0}=r_{e}=1.913 \times r_{e}=.5410^{-12} \mathrm{~cm} \\
& \hat{q}=\vec{Q} / Q
\end{aligned}
$$

$$
\begin{aligned}
& \vec{M}_{s}(\vec{Q})=F T\left[\vec{m}_{s}(\vec{r})\right] \\
& \vec{m}_{s}(\vec{r})=\left\langle\sum_{j} \vec{s}_{j} \delta\left(\vec{r}-\vec{r}_{j}\right)\right\rangle
\end{aligned}
$$

Orbital component, related to current density

$$
\begin{aligned}
& \vec{j}(\vec{r})=-\frac{e}{2 m}\left(\sum_{j}\left\{\vec{p}_{j} \delta\left(\vec{r}-\vec{r}_{j}\right)+\delta\left(\vec{r}-\vec{r}_{j}\right) \vec{p}_{j}\right\}\right) \\
& F_{M}(\vec{Q})=\vec{\sigma} \cdot \vec{\Phi}_{l}(\vec{Q}) \\
& \vec{\Phi}_{l}(\vec{Q})=-\frac{i r_{0}}{2 \pi Q} \hat{q} \times \vec{J}(\vec{Q}) \\
& \vec{J}(\vec{Q})=\vec{Q})=F T[\vec{j}(\vec{r})] \quad \text { conduc } \\
& \qquad \vec{\Phi}_{L}(\vec{Q})=r_{0} \hat{q} \times \vec{M}_{L}(\vec{Q}) \times \hat{q}=r_{0} \vec{M}_{\perp L}(\vec{Q})
\end{aligned}
$$

Orbital magnetisation density defined to any gradient, but magnetic amplitude uniquely defined

$$
\begin{aligned}
& F_{M}(\vec{Q})=r_{r} \vec{\sigma} \cdot \vec{M}_{+}(\vec{Q} \\
& \vec{M}(\vec{Q})=\vec{M}_{s}(\vec{Q})+\vec{M}_{L}(\vec{Q})
\end{aligned}
$$

Case of spin only magnetism, at zero temperature

Magnetization density in units of $2 \mu_{\text {B., }}$ with a quantization axis $0 z$ (applied field or natural quantization axis)

$$
\overrightarrow{\hat{m}}_{S}(\vec{r})=\sum_{j} \overrightarrow{\hat{S}}_{j} \delta\left(\vec{r}-\vec{r}_{j}\right)
$$

Ground state eigenstate of S^{2} and S_{z}.

$$
\begin{aligned}
& 2 M_{S}=n_{\uparrow}-n_{\downarrow} \\
& \qquad m_{S z}(\vec{r})=\left\langle\Psi_{S M_{s}}\right| \hat{m}_{S z}\left|\Psi_{S M_{s}}\right\rangle=M_{s} s(\vec{r})
\end{aligned}
$$

Normalized spin density

$$
s(\vec{r})=\frac{1}{n_{\uparrow}-n_{\downarrow}}\left\{\rho_{\uparrow}(\vec{r})-\rho_{\downarrow}(\vec{r})\right\}
$$

Orbital magnetization

In units of $2 \mu_{B}$

$$
\begin{aligned}
& \vec{m}_{L}(\vec{r})=\frac{1}{4}\left\langle\sum_{j}\left\{\vec{l}_{j} \delta\left(\vec{r}_{r}-\vec{r}_{j}\right)+\delta\left(\vec{r}-\vec{r}_{j}\right) \vec{l}_{j}\right\}\right\rangle \\
& \vec{L}=\sum_{j} \vec{l}_{j}
\end{aligned}
$$

Often, orbital moment is not a constant of motion. Often, spin orbit coupling remains localized, and L remains a reasonably good quantum number. $\left(L^{2}, S^{2}, J^{2}, J_{z}\right)$ are the good quantum numbers

$$
\begin{aligned}
& \vec{L}+2 \vec{S}=g \vec{J} \\
& g=1+\frac{J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)} \\
& \vec{S}=(g-1) \vec{J} \\
& \vec{L}=(2-g) \vec{J}
\end{aligned}
$$

Neutron elastic scattering

$$
\begin{aligned}
& I_{\uparrow \uparrow}=\left|F_{n}+r_{0} \vec{\sigma} \cdot \vec{M}_{\perp}\right|^{2} \\
& I_{\downarrow \downarrow}=\left|F_{n}-r_{0} \vec{\sigma} \cdot \vec{M}_{\perp}\right|^{2} \\
& I_{\uparrow \downarrow}=I_{\downarrow \uparrow}=r_{0}^{2}\left|\vec{\sigma} \times \vec{M}_{\perp}\right|^{2}
\end{aligned}
$$

If no spin analysis for scattered beam, two cross sections

$$
\begin{aligned}
& I_{\uparrow}=I_{\uparrow \uparrow}+I_{\uparrow \downarrow} \\
& I_{\downarrow}=I_{\downarrow \downarrow}+I_{\downarrow \uparrow}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\uparrow \uparrow}=\left|F_{n}+r_{0} \vec{\sigma} \cdot \vec{M}_{\perp}\right|^{2} \\
& I_{\downarrow \downarrow}=\left|F_{n}-r_{0} \vec{\sigma} \cdot \vec{M}_{\perp}\right|^{2} \\
& I_{\uparrow \downarrow}=I_{\downarrow \uparrow}=r_{0}^{2}\left|\vec{\sigma} \times \vec{M}_{\perp}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\uparrow}=I_{\uparrow \uparrow}+I_{\uparrow \downarrow} \\
& I_{\downarrow}=I_{\downarrow \downarrow}+I_{\downarrow \uparrow}
\end{aligned}
$$

Unpolarized neutrons

$$
I=\frac{1}{2}\left(I_{\uparrow}+I_{-}\right)=\left|F_{n}\right|^{2}+\left|F_{m}\right|^{2}
$$

$$
x=F_{m} / F_{n} \quad \Rightarrow \quad I=\left|F_{n}\right|^{2}\left\{1+x^{2}\right\}
$$

Magnetic effects hard to observe with unpolarized neutrons

Polarized neutron diffraction

Incident beam of polarized neutrons (spin $\vec{\sigma}$)

$$
I_{\vec{\sigma}}(\vec{Q}) \propto \mid F_{N}(\vec{Q})+\vec{\sigma} \cdot \vec{M}_{\perp}(\vec{Q})^{2}
$$

simple case : \vec{Q} in horizontal plane

$$
F_{M}^{\perp}=F_{M}
$$ Magnetization along Oz

Flipping ratio

$$
R=\frac{I_{+}}{I_{-}}=\left(\frac{F_{N}+F_{M}}{F_{N}-F_{M}}\right)^{2}=\left(\frac{1+\gamma}{1-\gamma}\right)^{2} \text { with } \gamma=\frac{F_{M}}{F_{N}}
$$

$$
\begin{array}{lll}
\text { si } F_{M} \ll F_{N} & \text { polarised } & R \cong 1+4 \gamma \text { Linear en } F_{M} \\
& \text { non polarised } & I \propto\left(F_{N}^{2}+F_{M}^{2}\right) \quad \text { negligeable }
\end{array}
$$

advantage of polarized neutrons for for weak magnetism

General case : \vec{Q} out of horizontal plane

$$
\vec{F}_{\mathrm{M}}^{\perp} \text { component of } \vec{F}_{\mathrm{M}} \quad \perp \vec{Q}
$$

$$
\begin{aligned}
& F_{M}^{\perp}=F_{M} \sin \alpha \\
& F_{M}^{\perp \perp}=F_{M}^{\perp} \sin \alpha=F_{M}(\sin \alpha)^{2}
\end{aligned}
$$

\vec{F}_{M} aligned along vertical axis z

Strong complementarity with X Ray high resolution diffraction, leading to charge density: mainly cohesive contribution towards sum of independent atoms

$$
\begin{array}{cc}
\rho(\vec{r})=\rho_{\uparrow}(\vec{r})+\rho_{\downarrow}(\vec{r}) & \rho_{\alpha}=\sum_{i} n_{i \alpha}\left|\varphi_{i \alpha}\right|^{2} \\
\delta \rho(\vec{r})=\rho(\vec{r})-\rho_{\text {ind.atoms }}(\vec{r}) & n_{\uparrow, \downarrow}=\sum_{i} n_{i \uparrow, \downarrow} \\
s(\vec{r})=\frac{1}{n_{\uparrow}-n_{\downarrow}}\left\{\rho_{\uparrow}(\vec{r})-\rho_{\downarrow}(\vec{r})\right\} &
\end{array}
$$

P. Coppens and I, with T. Koristzansky, initiated such combined study

Presently a strong project with LLD, CRM2, Spring8 and our lab SPMS combined refinement of charge and spin, and also charge / spin and momentum.

Real crystals: extinction

$$
\begin{gathered}
\vec{Q}=\vec{H}+\vec{q}=\vec{H}+\frac{1}{\lambda} \vec{\varepsilon} \\
\mathrm{~d}^{3} q=(2 \pi)^{3} \frac{\sin 2 \theta}{\lambda^{3}} \mathrm{~d} \Omega \mathrm{~d} \varepsilon
\end{gathered}
$$

Fig. 1. Definition of the directions of the incident beam \mathbf{u}_{0} and of the diffracted beam u with respect to their ideal values \mathbf{u}_{0}^{0} and \mathbf{u}^{0} (defining the diffraction plane), when the Bragg condition is fulfilled. R_{0} is the distance between the crystal and the counter.

$$
\begin{aligned}
& \sigma(\varepsilon)=Q v^{-1} \int d v \alpha \frac{\sin ^{2}(\pi \varepsilon \alpha)}{(\pi \varepsilon \alpha)^{2}} \quad \alpha=l \frac{\sin 2 \theta}{\lambda} \\
& Q_{\text {kinematic }}=\int \sigma(\varepsilon) d \varepsilon=\left|\frac{F}{V}\right|^{2} \frac{\lambda^{3}}{\sin 2 \theta} \quad\left(\mathrm{~A}^{-1}\right) \\
& P_{k}=I_{0} v Q_{\text {kinematic }}
\end{aligned}
$$

Reflected wave by a plane is out of phase by $\pi / 2$ with incident wave

n planes : $\mathrm{t}=\mathrm{nd}$. Number of possible 3-fold scattering
Probablility of rescattering

$$
\begin{aligned}
& 1+2+\ldots+n=n(n+1) / 2 \simeq n^{2} / 2 \\
& x_{p}=Q d n^{2} / 2=Q t^{2} \sin \theta / \lambda
\end{aligned}
$$

Critical extinction length Λ

$$
\Lambda=\left(\frac{\lambda}{Q \sin 2 \theta}\right)^{1 / 2}=\frac{V}{F \lambda}=\left(\frac{d}{Q}\right)^{1 / 2}
$$

In case of perfect regions $\mathbf{t}>\Lambda$, diffraction power

$$
Q \Lambda=\frac{F \lambda^{2}}{V \sin 2 \theta}
$$

Natural width of perfect crystal scattering function : d/ Λ Width of $\sigma(\varepsilon): \mathbf{d} / \mathbf{t}$

$$
\Lambda=\left(\frac{\lambda}{Q \sin 2 \theta}\right)^{1 / 2}=\frac{V}{F \lambda}=\left(\frac{d}{Q}\right)^{1 / 2}
$$

Generally, Λ around $50 \mu \mathrm{~m}$
If $\mathrm{t}>\Lambda$, dynamical regime
If $\mathrm{t}<\Lambda$, mixed regime, for which an extinction theory is applicable. This is favoured by using small wavelenths (gamma, synchrotron)

Mosaic model

Fig. 3
$W(\varepsilon)$ mosaic spread function, width η
$\sigma(\varepsilon), \quad$ of width $\beta=d / t \quad$ becomes $\quad \bar{\sigma}(\varepsilon)=\int \sigma(\varepsilon+\tau) \mathrm{W}(\tau) \mathrm{d} \tau$
width of $\bar{\sigma} \approx \Delta=\beta+\eta \quad$ secondary extinction parameter: $x_{s}=Q T / \Delta$
type 2 extinction: $\quad \eta \ll \beta \quad \bar{\sigma}=\sigma(\varepsilon) \quad x_{s}=Q T / \beta=t T / \Lambda^{2}$
type 1 extinction: $\quad \eta \gg \beta \quad \bar{\sigma}=\mathrm{QW}(\varepsilon) \quad x_{s}=Q T / \eta=t^{*} T / \Lambda^{2} \quad$ with $t^{*}=d / \eta$
In this case primary extinction to be considered: $\quad Q \Rightarrow Q y_{p}\left(x_{p}\right)$

$$
y=y_{p}\left(x_{p}\right) y_{s}\left(y_{p} x_{s}\right)
$$

Darwin's equations

Fig. 2. Section of the crystal in a plane parallel to \mathbf{u}_{0}^{0} and \mathbf{u}^{0}, the incident and diffracted directions. The coordinates of each point of interest are written in parentheses. $t_{1}=M_{1}^{0} M$; $t_{2}^{\prime}=\overline{M M_{2}^{1}}$.

$$
\begin{array}{lr}
t_{1}=\overline{M_{1}^{0} M}=x_{1}-x_{1}^{0} & I_{0}\left(M_{1}^{0}\right)=\mathscr{I}_{0} \\
t_{2}=\overline{M_{2}^{0} M}=x_{2}-x_{2}^{0} & I\left(M_{2}^{0}\right)=0 . \\
t_{2}^{\prime}=\overline{M M_{2}^{1}}=x_{2}^{1}-x_{2}, &
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial I_{0}}{\partial x_{1}}=-(\sigma+\mu) I_{0}+\sigma I \\
& \frac{\partial I}{\partial x_{2}}=-(\sigma+\mu) I+\sigma I_{0}
\end{aligned}
$$

Energy conservation besides absorption

Huge problems with Xray and neutron diffraction, in particular due to rather large samples, Unability to refine simple basic structures !

Many applications from BC approach

We could justify parameters studying the occurrence of domains at ferro-electric transition in Rb and K dihydrogeno-phosphate, as a function of temperature

Our Doliprane seems still to be OK. But nobody talks anymore about it. Be aware of $H_{1} N_{1 . \ldots . . .}$.

Strong improvements due to higher source flux and therefore use of much smaller crystals

$$
R=\frac{I_{\uparrow \uparrow} y_{\uparrow \uparrow}+I_{\uparrow \downarrow}}{I_{\downarrow \downarrow} y_{\downarrow \downarrow}+I_{\downarrow \uparrow}} \quad \text { If } \sigma_{+-} \text {is small, one can simplify as }
$$

$$
R=R_{k} \frac{y_{\uparrow}}{y_{\downarrow}}
$$

Table 4. Results for YIG-4 $6 \overline{42}$ reflexion; flipping ratio, corrected magnetic structure factor, primary and secondary extinction factor for each spin state, as functions of thickness and wavelength

Quantities in parentheses are standard deviations.

$\begin{aligned} & t(\mathrm{~mm}) \\ & \lambda(\AA) \end{aligned}$	R	F_{M} Gauss	F_{M} Lorentz	y_{P}^{+}	$y_{\bar{p}}$	y_{s}^{+}	$y_{s}{ }_{s}$	y^{+} / y^{-}
$\begin{aligned} & 1.00 \\ & 1 \cdot 10 \end{aligned}$	$\begin{gathered} 0.784 \\ (0.004) \end{gathered}$	$\begin{aligned} & 18.24 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 16 \cdot 13 \\ & (0 \cdot 8) \end{aligned}$	0.96	0.94	0.45	0.36	$1 \cdot 27$
$\begin{aligned} & 1.00 \\ & 0.92 \end{aligned}$	$\begin{gathered} 0.762 \\ (0.003) \end{gathered}$	$\begin{aligned} & 17.54 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 16 \cdot 57 \\ & (0 \cdot 7) \end{aligned}$	0.97	0.96	0.53	0.43	1.25
$\begin{aligned} & 1 \cdot 00 \\ & 0 \cdot 812 \end{aligned}$	$\begin{gathered} 0.759 \\ (0.003) \end{gathered}$	$\begin{aligned} & 16 \cdot 51 \\ & (0.6) \end{aligned}$	$\begin{aligned} & 16 \cdot 25 \\ & (0 \cdot 6) \end{aligned}$	0.98	0.97	0.58	0.48	$1 \cdot 23$
$\begin{aligned} & 0 \cdot 3 \\ & 1 \cdot 10 \end{aligned}$	$\begin{gathered} 0.711 \\ (0.004) \end{gathered}$	$\begin{aligned} & 16 \cdot 62 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 17 \cdot 27 \\ & (0 \cdot 5) \end{aligned}$	0.96	0.94	0.71	0.61	$1 \cdot 19$
$\begin{aligned} & 0.3 \\ & 0.812 \end{aligned}$	$\begin{gathered} 0.671 \\ (0.003) \end{gathered}$	$\begin{aligned} & 16 \cdot 43 \\ & (0 \cdot 4) \end{aligned}$	$\begin{aligned} & 17 \cdot 30 \\ & (0 \cdot 4) \end{aligned}$	0.98	0.97	0.82	0.73	$1 \cdot 13$
$\begin{aligned} & 0.3 \\ & 0.74 \end{aligned}$	$\begin{gathered} 0.669 \\ (0.003) \end{gathered}$	$\begin{aligned} & 16 \cdot 07 \\ & (0 \cdot 4) \end{aligned}$	$\begin{aligned} & 16 \cdot 91 \\ & (0 \cdot 4) \end{aligned}$	0.98	0.97	$0 \cdot 84$	0.77	$1 \cdot 11$
$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	$\begin{gathered} 0.637 \\ (0.003) \end{gathered}$	$\begin{aligned} & 16 \cdot 32 \\ & (0 \cdot 3) \end{aligned}$	$\begin{aligned} & 16 \cdot 84 \\ & (0 \cdot 3) \end{aligned}$	0.99	0.99	0.92	0.88	1.06
$\begin{aligned} & \text { powder } \\ & 1 \cdot 104 \end{aligned}$	$\begin{gathered} 0.608 \\ (0.005) \end{gathered}$	$\begin{aligned} & 16 \cdot 65 \\ & (0 \cdot 4) \end{aligned}$	$\begin{aligned} & 16 \cdot 65 \\ & (0 \cdot 4) \end{aligned}$	1	1	1	1	1

J.Phys. Chem. Solids, 40, 863-876, 1979

Extinction is like cold: everybody suffers from it, but very few die from it !
I do hope that studies about «extinction cold» in pathological labs will connect with reliable prescription of home doctors to crystallographers and they will then enjoy their better life in crystallography

Conversion from Darwinism to Katolicism

BALHADDad in the world of PhysicsEquations de Takagi

Norio Kato made key studies which were the basis of the work performed with Mostafa Al Haddad

$$
\begin{gathered}
\partial D_{0} / \partial s_{0}=i \kappa_{-h} \varphi\left(s_{0}, s_{h}\right) D_{h}\left(s_{0}, s_{h}\right) \\
\partial D_{h} / \partial s_{h}=i \kappa_{h} \varphi^{*}\left(s_{0}, s_{h}\right) D_{0}\left(s_{0}, s_{h}\right), \\
\kappa_{h}=\frac{1}{A} \\
\varphi\left(s_{0}, s_{h}\right)=\exp (2 \pi i \mathbf{h} . \mathbf{u}),
\end{gathered}
$$

$$
E=\left\langle\varphi\left(s_{0}, s_{h}\right)\right\rangle \quad \begin{aligned}
& \text { Long range order parameter },
\end{aligned}
$$ static Debye Waller factor

$$
E=\exp \left[-\left(2 \pi^{2} / 3\right) h^{2}\left\langle u^{2}\right\rangle\right],
$$

Could be applied to eigen Bloch states of disordered solids

We must try to maximize the effect of our interaction with humans (each being perfect if fully isolated). But we should keep in mind the mosaicity of human population

