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Scattering and diffraction of angstrom wavelength waves (X Ray, electrons, 
neutrons) is the key to study of atomic structure of condensed matter.

High resolution scattering allows for understanding vibrational, electronic
and magnetic behaviour of materials: key importance of combined X, N, E 
studies

New pulsed sources allow for a time dependent study for out of equilibrium
systems

I shall focus on neutron scattering, but keep in mind the 
importance of combined studies
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Outline

Nuclear Diffraction by a stationary target
- Case of a crystal. Comparison with Xray and Electron diffraction
- Taking thermal motion into account : total/Bragg scattering

Inelastic neutron scattering and study of phonons

Magnetic scattering of neutrons
-Basics
-Spin polarized diffraction:  access to spin density of materials: 
complementarity with Xray high resolution scattering

Reality of crystals: extinction
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Scattering cross section

X Rays, electrons, neutrons
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F0: incident flux – F: scattered flux
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Scattering by a stationary target:
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Crystalline target (periodic scattering function)

One defines the structure factor :

Coherent scattering . 
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Bragg diffraction conditions. 

Q
r

h is the momentumtransferred to the target by the wave.

Notice that the scattered wave has a phase shift ofπ/2 with
respect to the incident wave

λ
θπ sin4=H

For a finite crystal,  there is an opening angle around Bragg 
condition, of order d/L and one must integrate the peak intensity
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Case of X Rays

Elementary scatterers are electrons, all undiscernable

Electron charge density is the effective « target » :
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Independent atomapproximation

For a 1A0 wavelength, the energy of the photon is about 12000ev, 
much higher than cohesive energies in a material
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proportional to atomic number

They decay as the inverse of atomic
radius
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Neutrons result from fission of U235 and are produced with an energy  > 1Mev 
Moderation via collisions with D2 O, liquid  hydrogen, graphite

Also spallation sources, producing pulsed neutrons

Wave-particle duality 2
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Neutron waves

For λ =1 Å

E =80 meV

T = 950K

v = 4000 ms-1

13
Neutron is a fermion, with ½ spin

photonelectronprotonn γ++⇒Neutron life time is about 900 sec
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One talks about « thermal Neutrons », behaving like a perfect gaz flow

It is necessary to monochromatise the beam, λ ≈  λ0 , which also
produces significant beam withλ/2 wavelength

The speed of neutrons is low enough to allow for time of flight detection, 
besides usual selective absorption

14
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Basic interaction with matter is nuclear interaction, which for study of 
materials, can be considered as ponctual (range of fm)
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rrhr −= δπ 22 b is called the scattering length by 
a nucleus, of the order of 10-12 cm

15

Very significant complementarity towards XRays
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It can be re-written as [ ] ( )φδφ rbk
r=+∆ 2

After collision, the neutron is scattered with the sameenergy, and can be described
as a spherical wave. One can show (1rst Born approximation, sinceb is very small
compared to λ) that the proper solution (Green function) is

16

Let’s consider an incident neutron wave directed towards a nucleus located at origin. 
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Generalization to electron scattering
and beyond

( ) ( )

( ) ( ) ( ){ }

( )
[ ) ( )∫

∑

∫

=

=

−=

=

rderQA

eZQA

Q

QAQAme
QA

rdernQA

rQi
eX

RQi

j
jc

Xc
e

rQi
N

j

rrr

r

rr

h

r

rrr

rr

rr

rr

.

.

2
0

2

2

.

2

ρ

επ

It will also apply to magnetic interactions of neutrons with matter
Important complementarity of Xray / Electron  scattering
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For a stationary crystal, forgetting about surface effects…

Phase problemremains to retrieve the scattering density
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Also direct methods are available for getting the phases

Great thanks to David Sayre, Jerome Karle and Herbert Hauptman
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Due to finite size, scattering occurs out of exact Bragg condition
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For a given position of the crystal (ε), the cross section per unit 
volume isσ(ε), and after rotation of the crystal, one gets the total 
« kinematic » diffraction cross section per unit volume :
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There are resolution limits due to the fact that
λ
π4≤H

r

There can be a mixture of isotopes in a compound, and moreover there can
be a spin coupling between the neutron and scattering nucleus. As a 
consequence, the scattering length of a given atom can vary from one site 
to another one
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Diffraction experiments occur on systems at a given tamperature. This creates
vibrational disorder of atomic positions. In crystals, those vibrations are phonons
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Debye Waller factor lowers signal for high T, large scattering angle, light atoms, 
with major contribution from acoustic frequencies.

Anharmonic motion can also be considered

For systems made of molecules or for instance organicfragments linked to a 
protein, one can model vibrations in terms of intra-molecular (high frequency) and 
inter-molecular acoustic vibrations !

The other term <∆Α2> corresponds to thermal diffuse scattering. See laterit’s
frequency analysis. If no energy analysis is done, it isa diffuse contribution, 
which is considered as part of background

Static atomic disorder can also lead to a lowering factor, 
not dependent on T (see extinction !!!)
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Parameters progressively introduced in the structure factor and the scattering
density function can be adjusted by a refinement of observed data towards the 
proposed model, via a minimisation with respect to adjustable key parameters
(positions, thermal parameters…)
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Another approach is the maximum entropy method

Model refinement can be very critical

Besides crystals, many applications to aperiodic structures, 
disordered solids (glass) and liquids
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Space and time correlation function
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System and beam in a statistical initial state
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Elastic scattering
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Phonon scattering
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Consider inelastic scattering for a model crystal with one atom/cell, 
where the system will go from vibrational state ψn to ψm

Displacement can be decomposed in phonons. We simplify by 
considering only one phonon, of wave vector q
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Creation or absorption of phonon

Energy change can be very pronounced with neutrons, very
small with X Rays (need for very high resolution
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In a given scattering direction thus, with energy analyser, one getsω, kf, and 
thereforeq, ω(q)
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Key application of neutrons, in particular for phase transitions
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Spin component
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Orbital component, related to current density
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Case of spin only magnetism, at zero 
temperature

Magnetization density in units of 2µB., with a quantization axis 0z (applied
field or natural quantization axis)
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Orbital magnetization

( ) ( ) ( ){ }

∑

∑

=

−+−=

j
j

j
jjjjL

lL

lrrrrl
4

1
rm

rr

rrrrrrrr δδ
In units of 2µB

Often, orbital moment is not a constant of motion. Often, spin orbit
coupling remains localized, and L remains a reasonably good quantum 
number.           (L2, S2, J2, Jz) are the good quantum numbers
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Neutron elastic scattering
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Unpolarized neutrons
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Magnetic effects hard to observe with unpolarized neutrons
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Polarized neutron diffraction

Incident beam of polarized neutrons (spin    )σr

polarising
monochromator

flipper
single crystal
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advantage of polarized neutrons for 
for weak magnetism

MM FF =⊥simple case :      in horizontal plane
Magnetization along Oz
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component of ⊥
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Strong complementarity with X Ray high resolution diffraction, leading to charge 
density: mainly cohesive contribution towards sum of independent atoms

P. Coppensand I, with T. Koristzansky, initiated such combined study

Presently a strong project with LLD, CRM2, Spring8 and our lab SPMS
combined refinement of charge and spin, 
and also charge / spin and momentum.
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Real crystals: extinction
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n planes : t=nd . Number of 
possible 3-fold scattering

Probablility of rescattering

t=n
d

Reflected wave by a plane is out of phase by π/2 with incident wave

Critical extinction length Λ
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In case of perfect regionst > Λ, diffraction power

Generally, Λ around50µm

If t > Λ, dynamical regime

If t < Λ, mixed regime, for which an extinction theory is applicable. This is
favoured by using small wavelenths (gamma, synchrotron)
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Natural width of perfect crystal scattering function : d /Λ

Width of σ(ε) : d / t

2/12/1

2sin 







==








=Λ

Q

d

F

V

Q λθ
λ



JDN 22, September 21-24  2014 52

Mosaic model
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Darwin’s equations

Coherence is forgotten about
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Energy conservation besides
absorption



Many applications from BC approach

Strong improvements due to higher source flux and therefore use of 
much smaller crystals

Huge problems with Xray and neutron diffraction, in particular due to 
rather large samples,  Unability to refine simple basic structures !

We could justify parameters studying the occurrence of domains at ferro-electric
transition in Rb and K dihydrogeno-phosphate, as a function of temperature

Our Doliprane seems still to be OK. But nobody talks anymore about it.
Be aware of H1 N1…….
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Extinction is like cold: everybody suffers from it, but very few die from it !

I do hope that studies about « extinction cold » in pathological labs will connect
with reliable prescription of home doctors to crystallographers and they will then
enjoy their better life in crystallography

Conversion from Darwinism to Katolicism



Norio Kato made key studies which were the basis of the work
performed with Mostafa Al Haddad

Λ
= 1

hκ

Long range order parameter,                
static Debye Waller factor

BALHADDad in the world of PhysicsEquations de Takagi

Could be applied to eigen Bloch states of disordered solids
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We must try to maximize the effect of 
our interaction with humans (each

being perfect if fully isolated). But we
should keep in mind the mosaicity of 

human population


